
A Fast Operational Transformation Algorithm
for Mobile and Asynchronous Collaboration

Bin Shao, Member, IEEE, Du Li, Member, IEEE, and Ning Gu, Member, IEEE

Abstract—In a mobile collaboration environment, the shared files are often replicated so that the users can work in parallel during

periods of disconnection. When reconnected, sequences of updates made by different users are merged to produce a consistent view

of shared files. This paper presents a novel transformation-based merging algorithm for supporting mobile collaboration. Compared to

alternative optimistic consistency control methods, it can merge any updates to the same file automatically at the finest granularity

without causing loss of work. Moreover, it improves the time complexity of the state-of-the-art transformation-based merging

algorithms from Oðn3Þ to OðnÞ, where n is the size of either sequence when their sizes are comparable. This improvement is drastic

and important especially for mobile devices that run on batteries and have limited processing power.

Index Terms—Collaboration, concurrency control, data consistency, mobile computing, operational transformation, optimistic

replication.

Ç

1 INTRODUCTION

MOBILE computing devices such as laptops, netbooks,
PDAs, tablets, and cellular phones are becoming more

and more pervasive. Compared to their desktop counter-
parts, mobile devices typically operate on batteries and
wireless networks for mobility and their connections are
usually intermittent. These characteristics pose significant
challenges on the design of collaborative systems that
support collaboration in a mobile environment.

One of the major challenges is data consistency. For
performance reasons such as responsiveness and availabil-
ity, the shared data are often replicated on mobile devices.
As a result, the users are able to work on their local data
replicas in disconnected mode and synchronize with their
collaborators when the devices are reconnected and the
users feel “ready.”

In the presence of intermittent connection, consistency
control has to be optimistic [2]: Pessimistic protocols such as
two-phase locking (2PL) are often too expensive for the
system and counterproductive for the users since they have
to wait for locks. In contrast, optimistic protocols allow data
replicas to diverge so that users can still make progress
concurrently even when disconnected; consistency is even-
tually achieved when concurrent updates are merged and
conflicts resolved.

A number of optimistic replication techniques have been
proposed in the literature, to name but a few, [3], [4], [5], [6]. In
general, these techniques consider two primitive operations,
read and write; updates to the same object are usually

executed in the same total order to ensure convergence in
different data replicas. As a consequence, however, they may
suffer from loss of updates since only one write can
eventually “win” among multiple concurrent writes that
conflict, i.e., target the same object. Therefore, those techni-
ques are usually used in applications in which concurrent
updates rarely conflict, e.g., distributed file systems [3], [5].

Operational transformation (OT) [7], [8] is an optimistic
technique that is originally proposed in the context of
collaborative document editing. In this domain, the users
often need to edit the same document simultaneously, in
which blocking, coarse-grained consistency control is often
unacceptable [9]. OT is more suitable due to its lock-free,
nonblocking properties. In OT, data updates are usually
represented in two primitives, insert and delete; any pair of
updates can be transformed to commute; consistency can be
achieved without enforcing a total order of execution. At
one extreme, OT can automatically merge all updates to the
same file, preserving all their effects for deferred conflict
resolution. The technique can handle both unstructured and
structured contents, including text files, source code, Web
pages and XML documents [8], [10], [11].

We study how to extend OT techniques to mobile
systems in this paper. Due to the needs to support
disconnected operation, they must be able to efficiently
merge update sequences of arbitrary lengths. However,
most existing OT algorithms are designed for supporting
real-time group editing in which updates are frequently
propagated and merged. As a result, they focus on how to
transform one operation at a time rather than how to merge
long sequences. As will be shown in Section 2, the state-of-
the-art OT algorithm takes Oðn2Þ to merge one remote
update and Oðn3Þ to merge a long sequence, where n is
the size of the local operation log. Those algorithms would
be suboptimal on mobile devices.

This paper presents a novel OT-based algorithm opti-
mized for supporting mobile and asynchronous collabora-
tion. As the main contribution, we propose an admissibility-
based sequence transformation (or ABST) algorithm, which

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010 1707

. B. Shao and N. Gu are with the School of Computer Science, Fudan
University, Shanghai 200433, China.
E-mail: {binshao, ninggu}@fudan.edu.cn.

. D. Li is with Nokia Research Center, 955 Page Mill Road, Palo Alto, CA
94304. E-mail: lidu008@gmail.com.

Manuscript received 30 Apr. 2009; revised 4 Sept. 2009; accepted 15 Sept.
2009; published online 31 Mar. 2010.
Recommended for acceptance by P. Stenstrom.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-04-0190.
Digital Object Identifier no. 10.1109/TPDS.2010.64.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

improves the time complexity of the state of the art from
Oðn3Þ to OðnÞ when merging two sequences, where n is the
size of either sequence when their sizes are comparable.
Our experiments show a remarkable performance improve-
ment: For example, it takes 59 minutes in a recent OT
algorithm [12] versus 1.5 seconds in this work on a mobile
device to integrate two sequences each of 3,000 operations.

This efficiency improvement is achieved primarily by
maintaining a special order on operations in each of the
involved sequences based on the so-called operation effects
relation [12]. As a result, by exploiting this operation order,
the key steps in merging any two concurrent sequences can
all be achieved in linear time. In this paper, we will also
prove correctness of the ABST algorithm. In fact, the
algorithm is so named because it is based on the admissi-
bility theory [12], [13] that formalizes correctness conditions
to address some chronic correctness problems in previous
work. In other words, the efficiency improvement in this
work is well grounded on correctness of the algorithm.

The rest of this paper is organized as follows: First, in
Section 2, we analyze and compare related works to establish
the context for this research. After that, Section 3 introduces
the basic concepts and notations to be used in this paper.
Sections 4 and 5 present the ABST algorithm. Section 6 gives
an example to further illustrate its working. Sections 7 and 8
analyze its correctness and performance, respectively. Then
Section 9 discusses conflict detection. Finally, Section 10
summarizes the contributions and future directions.

2 CONTEXT: RELATED WORKS

This work mainly involves the following three aspects: data
and file synchronization, optimistic replication, and OT. We
compare related works regarding these aspects accordingly.

2.1 Data and File Synchronization

Data synchronizers such as ActiveSync and IntelliSync
focus on synchronization of structured data such as contacts
and calendars, especially between a desktop computer and
a mobile device. Since the data has fixed structures
and concurrency is limited, conflicts can be easily detected
and resolved by predefined policies that are usually
application specific.

There has been significant research on file synchronizers,
e.g., [14], [15]. In general, they detect conflicts at the file
level. When two updates to the same file are concurrent, a
conflict is reported for the user to manually merge the
updates. Updates to the same file are not merged auto-
matically. In comparison, this work focuses on fine-grained
file content synchronization.

Tools such as Rsync can merge updates to unstructured
files at a finer granularity than the file level. It chops a file
into fixed-size, nonoverlapping chunks and computes their
checksums. Then checksums of different replicas are
compared. Chunks that do not match are transmitted from
the sender to the recipient and merged to make the two
replicas identical. Some of the chunks may be overwritten.
The main limitations are its unidirectional synchronization
and chunk-based granularity.

Version control systems such as RCS, CVS, SVN and GIT
are widely used in software projects for coordinating and

synchronizing parallel modifications to source code. In
general, they work at the granularity of lines. Two
concurrent changes are conflicts if they happen to the same
line, and it is usually considered that only the user can
resolve the conflicts. Manual merging is required even if the
changes do not really conflict. Those systems are asynchro-
nous because the users usually synchronize at the granu-
larity of block updates instead of single-character edits. It is
possible to integrate OT-based techniques such as ABST in
those systems to help reduce manual work by implement-
ing more fine-grained merging without losing efficiency. In
general, the idea of OT is to preserve the effects of all
updates and assume the “right” user interfaces and
mechanisms for the human users to detect and resolve
semantic conflicts, e.g., grammatical errors [10], [16].
Merging can be automated as long as concurrent updates
do not really cause semantic conflicts.

2.2 Optimistic Replication

Optimistic replication techniques are widely used in mobile
systems, such as Coda [3], [17], Bayou [4], Rumor [5], and
IceCube [6]. Among them, Coda and Rumor are distributed
file systems which assume concurrent updates to the same
file are rare; hence, they generally consider those updates as
conflicts that are resolved by human users.

Bayou [4] guarantees consistency by enforcing that all
sites execute the same set of writes in the same total order.
By comparison, our work achieves consistency without
enforcing a totally ordered execution path. In addition,
Bayou has an abstract concept of session that bears some
resemblance to our concept of transactional sequence. A
session is a sequence of read/write operations that need to
be consistent in effects, while operations in a transactional
sequence are required to be executed without interruption
at local and remote sites.

In IceCube [6], consistency is achieved by replaying
merged operation logs from the same initial state; operations
in the logs are reordered to minimize conflicts; when conflicts
occur, the system is blocked and the resolution is delegated to
the user. By comparison, our approach is also log-based;
operations in the log are kept separately by their types; when
a sequence is integrated, operations are reordered to optimize
the algorithm complexity rather than avoid conflicts.

2.3 Operational Transformation

The approach taken in this work is an orthogonal optimistic
replication technique called operational transformation
(OT). Among the most differentiating properties of OT,
positions of objects in the data structure (e.g., a linear array)
are used for uniquely identifying objects, which is much
cheaper than using global object ids; two primitives, insert
and delete, are used in place of write and any pair of
updates can be transformed to commute, which avoids
overwriting and eliminates the need for the same total order
of execution to achieve consistency. These properties make
it possible to support fine-grained updates, merging, and
conflicts handling.

2.3.1 General Issues in Previous Work

A plethora of OT algorithms has been proposed over the
past decade, e.g., [8], [10], [18], [19], [20]. We survey them
along the following two dimensions.

1708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

First, most OT algorithms are based on the framework of
Sun et al. [10], which includes three conditions, namely,
convergence, causality, and intention preservation. The
notion of intention preservation is intuitive and has been
adopted widely in a range of collaborative editing systems.
Nevertheless, due to its generality, intention preservation is
not intended to be a formal condition for purposes of
correctness proofs in specific applications, e.g., group text
editors. Some of the remaining challenges have been
confirmed, e.g., as in [13], [16], [21], [22].

Second, most OT algorithms, e.g., [8], [10], [12], [16], [18],
[21], are designed for real-time group editors which assume
frequent propagation of operations. Under this assumption,
the local history (H) is usually kept short enough to warrant
efficiency. Hence, although operations are usually propa-
gated in batches [23], those algorithms only address how to
integrate one remote operation at a time. On the other hand,
they keep operations in the history H in the order of
execution. Hence, every time a remote operation o is
integrated, they generally need to transpose the history
such that those operations that happened before o precede
those that are concurrent with o; then o is transformed with
those concurrent operations [8]. The transposition step
alone takes OðjHj2Þ time [24]. While they may not have
performance problems in real-time group editors, those
algorithms deserve further optimizations for mobile com-
puting due to the need to support disconnected operation.

Shen and Sun [25] proposed one of the few OT
algorithms for asynchronous collaboration. Their work is
based on the notion of intention preservation. In addition, it
is tailored for a client/server architecture and achieves
convergence by making use of the server. It orders
operations in sequences in their execution order, as in other
OT works. When transforming two sequences, it takes time
quadratic in the size of the two sequences. Nevertheless,
their work is complementary to ours: Their proposal to
compress the operation sequences [26] could be leveraged
in our future research to reduce the size of sequences for
even better efficiency; and our work orders input sequences
by the effects relation to achieve linear merging time, which
could be leveraged in their work.

Prior work in [27] also involves how to merge two
sequences (edit scripts obtained by diffing [28]) in linear
time. However, its focus is on how to turn single-user
editors into real-time group editors without modifying
source code. Hence, its algorithm is simplified to work only
for two sites such that every time two sequences are
transformed they must be defined in the same state. This
requires that the two users sync at the same time, which is a
severe constraint in mobile environments. Nevertheless,
results in this work can be leveraged in the system of [27]
for improved flexibility in sync.

2.3.2 The State of the Art and Comparisons

Admissibility-Based Transformation (ABT) [12], [13] is our
latest theoretical framework that proposes two formal
conditions, namely, causality and admissibility preserva-
tion. For correctness reasons, ABT maintains history H as
the concatenation of an insertion subsequence (Hi) and a
deletion subsequence (Hd). Operations in either subse-
quence are in execution order. As analyzed in [24], ABT

takes OðjHij2 þ jHdjÞ time to integrate a remote operation
because only Hi is transposed.

In our performance experiments (Section 8), we will use
ABT as the baseline for comparisons, mainly for two
reasons: First, although there exists alternative under-
standing of OT correctness [10], by our understanding, we
prefer to compare performance of ABST to those that are
also formally proved and fully presented for ease of
validation. Second, ABT is, in general, more efficient than
other OT algorithms to our knowledge. Among the most
established works, SOCT2 takes OðjHj2Þ time to integrate
one remote operation, which is slower than ABT by some
factor because Hi is a subsequence of H [24]; and according
to [20], the complexity of GOTO [8] is exponential in the
size of the history H.

An algorithm that takes OðjHj2Þ or more time to integrate
one remote operation would be suboptimal for mobile
computing. Suppose that when a sequence T is integrated,
jT j ¼ m and jHj ¼ n. Each time one operation from T is
integrated, it is added to H, increasing its size by one.
Hence, using an OðjHj2Þ algorithm, the time to integrate T is
Oð
Pnþm�1

k¼n k2Þ ¼ Oðn2 �mþ n �m2 þm3Þ. When m and n are
comparable, it is OðjHj3Þ.

ABST is follow-up work of ABT and its correctness can
be formally proved (Section 7). The notion of effects relation
in ABT is leveraged to order operations by the relative
position of their effects, i.e., the objects they insert and
delete. The main differences are that: 1) ABST propagates
and integrates operations in transactions, and 2) ABST
keeps histories and transactions ordered by the effects
relation. As a result, by exploiting this ordering property,
time complexities of the four key functions in ABST,
getConcurrentSQ, ITSQ, mergeSQ, and swapSQ, are linear.
Also, note that these functions are for handling transac-
tional sequences, and hence, all new in ABST.

3 BACKGROUND: CONCEPTS AND NOTATIONS

We first illustrate the basic ideas behind OT, define the data
model and primitives, and explain the key concepts, effects
relation and admissibility. We also introduce some useful
notations, which are summarized in Table 1.

3.1 Basic Ideas of OT

The basic ideas of OT can be illustrated as shown in Fig. 1.
Suppose that a file containing string “ac” is replicated at two
sites. Site 1 performs operation o1 ¼ insð1; bÞ locally which
inserts “b” at position 1 to change the content to “abc.” In
parallel, site 2 performs o2 ¼ delð0Þ locally to delete the
object “a” at position 0 to change the content to “c.” These
two operations are propagated to all sites.

At sync time, site 1 needs to merge remote operation o2

with local operation o1. By inspecting their positions, o1

inserts on the right side of where o2 deletes. Hence, the
position of o2 is not affected and can be executed as-is in
state “abc,” which results in content “bc.” In this case, the
execution form of o2 is o02 ¼ delð0Þ.

On the other hand, at site 2, if o1 were executed as-is in
current state “c,” the wrong content “cb” would be yielded.
This is because the execution of o2 on the left of where o1

inserts has invalidated the position of o1. Hence, o1 needs to

SHAO ET AL.: A FAST OPERATIONAL TRANSFORMATION ALGORITHM FOR MOBILE AND ASYNCHRONOUS COLLABORATION 1709

be transformed (i.e., by shifting its position) into form o01 ¼
insð0; bÞ such that it can be correctly executed in current state
of site 2. As a result, site 2’s content becomes “bc” and the
two replicas converge despite different orders of execution.

In traditional distributed systems, the same total order of
operations is often enforced at all sites such that the replicas
converge in the same state. Obviously, different total orders
usually yield different results. In Fig. 1, for instance, if the
total order is that o1 precedes o2, site 2 must first undo o2,
and then, execute o1 and o2 in order; if the total order is o2

precedes o1, on the other hand, site 1 must first undo o1, and
then, execute o2 followed by o1. Although the former total
order produces the right result “bc,” the latter yields the
wrong result “cb” that violates the intention of o1 to insert
“b” before “c” [10].

Traditional systems generally focus on convergence and
do not address which total order is “right.” In contrast, OT-
based systems further require that the execution of
operations preserves operation intentions [10] or admissi-
bility [12], [13]. Admissibility differs mainly in that it is a
formal and provable condition.

3.2 Model of Data and Primitive Operations

To simplify discussions, we model the shared data as a
linear string (or sequence) and only consider two primitive
operations, ins(p; c) and del(p), which insert and delete one
object (character) at position p, respectively. For any
operation o, we define the following five attributes: o:id is
the id of the site that originally generates it; o:v is the time

stamp when o is generated; o:type is either ins or del; o:pos is
the target position; and o:c is the effect object that o inserts
or deletes.

Note that o:pos is an integer since the shared data are
modeled as a linear string. According to [11], we can denote
o:pos as a vector of integers to model a tree structure, with
little modification to the algorithms. Further, according to
[19], even operations in sophisticated office and design
software can be mapped to a linear or tree-like data model.
Theoretically, an update operation that modifies an attri-
bute of an object could be denoted as a deletion of the
original object followed by an insertion of the object with
the new attribute. Therefore, our model does not lose
generality although simplified.

3.3 Effects Relation and Admissibility

Here, we only conceptually explain the concepts. A more
rigorous treatment has been presented in [12], [13].

Notation � denotes the relation between objects. In the
scenario of Fig. 1, for example, due to the initial state “ac,”
we have a � c. After “b” is inserted, the relation is extended
to a � b � c. In any state of the shared data that ever
appears in our system, which is a linear structure in our
model, the relation � is a total order.

We extend � to denote the effects relation between
operations, which is defined as the position order between
the effects of two operations. In the above scenario, since the
effect object o2 deletes (“a”) appears on the left of the effect
object o1 inserts (“b”) in some state “abc,” we denote their
effects relation as o2 � o1.

When any operation o is generated, the relation between
its effect object o:c and the objects in its generation state is
determined: If o is an insertion, it creates a new object o:c
and introduces new relationships between o:c and existing
objects; if o is a deletion, it removes an existing object o:c but
does not change the relationships between o:c and other
existing objects.

The invocation of any operation locally in its generation
state is not interfered by concurrent operations. However,
when a remote operation o is invoked, we must transform o
into a form o0 such that o0 is admissible in its execution
state. That is, the execution of o0 should not introduce new
relationships that contradict the relation � that has been

1710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

Fig. 1. Concurrent updates are transformed to commute at sync time
without overwriting each other.

TABLE 1
Main Notations and Their Semantics: o and oi Denote Operations, and sq and sqj Denote Sequences

established, e.g., rendering it cyclic. For example, in the
above scenario, if o1 were invoked at site 2 in the form of
ins(1,b), it would lead to relation c � b, which violates the
relation b � c that has been established when o1 is generated
at site 1.

Note that the effects relation � is a partial order, e.g.,
when two concurrent operations insert at the same position.
In Fig. 1, suppose that o3 inserts “d” also between “a” and
“c” and o1 k o3. When o1 and o3 are generated, a � b � c and
a � d � c, and we cannot determine their effects relation.
However, whenever they are transformed with each other
at some site, to be admissible, their effects relation, either
o1 � o3 or o3 � o1, must be unambiguously determined. As
a result, relation � eventually becomes a total order in the
system [12], [13].

3.4 More Notations on Operations and Sequences

In scenarios like the above, concurrent execution of
operations can easily lead to inconsistencies. Hence, when
merging two operations, we need to determine their
temporal relationship, e.g., whether or not they are
concurrent. As is conventional in distributed systems [7],
[29], we use vector time stamps for determining the
happens-before (!) and concurrent (k) relations. In the
above scenario, we have relation o1 k o2.

In addition, note that o:pos is always relative to a state of
the document. Borrowing established notations from [8], if
two operations are defined in the same state, they are said
to be contextually equivalent (t); if one is defined in the
state resulted from executing another operation, they
are said to be contextually serialized (7!). In Fig. 1, we
have o1 t o2, o1 7! o02, and o2 7! o01.

An operation sequence sq ¼ ½o1; o2; . . . :; on�means that all
operations in sq are contextually serialized. That is,
o1 7!o2 � � � 7! on. The number of operations in sq is denoted
as jsqj. Notation sq½i� refers to the operation in position i of
sq, where 0 � i < jsqj. If two sequences sq1 and sq2 are
contextual serialized, denoted as sq1 7! sq2, we can con-
catenate them into a new sequence sq ¼ sq1 � sq2. General-
izing notations 7! and �, for an operation o and a sequence
sq, if sq 7! o, we can append o to sq obtaining a new
sequence sq0 ¼ sq � o.

4 SEQUENCE TRANSFORMATION ALGORITHM

A history buffer H is maintained at each site which records
all operations that have been executed at that site. ABST
propagates and integrates a sequence of operations at a time
as if it is a “transaction.” By keeping operations in the
effects relation order, integrating a remote sequence can be
achieved in linear time.

We present the ABST algorithm in Sections 4 and 5.
Section 4.1 first introduces the concept of “transactional
sequence.” Section 4.2 discusses how a remote sequence T
is integrated with local history H. The rest of Section 4
elaborates all the functions that are called in the integration
algorithm. Then, Section 5 discusses how to obtain a local
transactional sequence before it is propagated.

For the scope of this paper, we assume that all sites start
from the same version of the shared data and all sequences
are eventually received by all sites in the system. That is, we

do not address exactly how the shared data are replicated
and how the sequences are propagated. Those problems
and their solutions are already well understood in the
literature [2].

4.1 Transactional Sequence

A human user is usually not interested in propagating or
receiving single ins/del operations, but in a larger editing
session, applied as a unit, somewhat akin to a database
transaction [15]. We call it a transactional sequence, which
conceptually has two aspects:

On the one hand, the user performs a batch of editing
operations locally first, and then, propagates them to
remote sites when she feels “ready” for sharing. During a
local transaction, no remote operation is merged so as not to
distract the user from her own work. This way, a sequence
T of operations is accumulated and propagated in its
entirety to remote sites.

On the other hand, at sync time, a number of sequences
could have been received from remote sites. These
sequences are kept in a receiving queue RQ. When the
user feels “ready” for merging, each time a sequence T from
RQ is integrated into H after transformation. The trans-
formed sequence T 0 is then applied to the local data replica
in its entirety.

A transactional sequence has the following properties:
All operations in a given transactional sequence T have the
same site id; their vector time stamps are equivalent in all
corresponding elements except for the one representing that
site. Hence, we can use T:id for the site id, and T:type for the
type if all operations in T are of the same type. It can be
shown that for any operation o that is not in T , if o is
concurrent with any T ½i�, then o must be concurrent with
any other T ½j�, where 0 � i; j < jT j. Similarly, for any
operation o0 that is not in T , if it happens before any T ½i�,
it must also happen before any other T ½j�. For convenience,
we denote the relations as o k T and o0 ! T , respectively.

4.2 Integrate One Remote Sequence

In our work, we maintain the history H at each site as
Hi �Hd, where Hi is a sequence of all insertions and Hd is a
sequence of all deletions in H. Furthermore, operations in
each of these two subsequences are ordered by the effects
relation � . Similarly, a transactional sequence T is
maintained as Ti � Td, where Ti and Td are sequences of
insertions and deletions that are ordered by the effects
relation, respectively. History H is initially empty and
grown incrementally as local and remote transactions are
integrated. As explained in Section 2.3 and will be
elaborated in Sections 7 and 8, sequences H and T are so
ordered for correctness and efficiency reasons.

Let Hk be site k’s history. When a sequence T is
generated at site x, Hx ! T must hold. When T is
integrated at site y, it must be causally-ready at site y, i.e.,
all operations that happen before T have been executed at
site y and included in Hy. Before T ¼ Ti � Td is propagated
from site x, it must have been transformed with Hx such
that Hx

i 7! T 7! Hx
d . That is, T does not include the effects of

any deletions that happen before T . We will explain how to
obtain T that satisfies this condition in Section 5 and why in
Section 7.

SHAO ET AL.: A FAST OPERATIONAL TRANSFORMATION ALGORITHM FOR MOBILE AND ASYNCHRONOUS COLLABORATION 1711

Algorithm 1 shows how a remote sequence T is
integrated with local history H. Properties of the two input
sequences are as explained above. In the output, T 0 is the
result of transforming T with H; H 0 already includes all
operations in T ; and the same ordering properties are
maintained in H 0 and T 0. After function Integrate returns,
the resulting T 0 is ready to be executed in the current state
of the local data replica.

Algorithm 1. Integrate(T;H): ðT 0; H 0Þ
1: csqi getConcurrentSQðTi;HiÞ
2: T 00i ITSQðTi; csqiÞ
3: T 0i ITSQðT 00i ; HdÞ
4: H 0i mergeSQðHi; T

00
i Þ

5: H 00d ITSQðHd; T
00
i Þ

6: csqd getConcurrentSQðTd;H 0iÞ
7: T 00d ITSQðTd; csqdÞ
8: T 0d ITSQðT 00d ;H 00d Þ
9: H 0d mergeSQðH 00d ; T 0dÞ

10: return ðT 0i � T 0d;H 0i �H 0dÞ
The essential idea of integrating a remote operation o is

to incorporate the effects of operations that have been
executed locally (already in H) but not yet included in o.
The execution of those operations has led to current state of
the data but may have invalidated the position of o relative
to the current state. In the literature [8], the process of
incorporating effects of one operation into another is called
inclusion transformation or IT.

The same idea applies when integrating a remote
sequence T . As explained in Section 4.1, when Algorithm 1
is called, T is causally ready. That is, any operation in H
must either happen before T or be concurrent with T . In
addition, T has excluded the effects of all deletions that
happen before T in its originating site. We know that H is
maintained as Hi �Hd, or an insertion sequence Hi con-
catenated by a deletion sequence Hd. Hence, T includes
effects of some of the operations in Hi (that happened before
T) but none of the operations in Hd. By the spirit of OT, we
need to incorporate the effects of all insert operations in Hi

that are concurrent with T and all delete operations in Hd.
Accordingly, Algorithm 1 consists of two parts: lines 1-5

integrate Ti and lines 6-9 integrate Td. We explain these two
parts as follows:

First, to integrate Ti, we need to extract all operations in
Hi that are concurrent with Ti, resulting in sequence csqi.
This is achieved by function getConcurrentSQ. Next, we call
function ITSQ to incorporate the effects of csqi into Ti,
resulting in T 00i . Then, we incorporate the effects of Hd into
T 00i , yielding T 0i . After that, we call function mergeSQ to
merge T 00i into Hi, yielding H 0i. Now all insertions in T are
integrated into H.

Note, however, that the last step to merge T 00i into Hi

invalidates the definition state of Hd. This is because Hd is
defined in the state obtained by executing Hi, i.e., Hi 7! Hd.
After the merging, property, H 0i 7! Hd no longer holds due
to the effects of T 00i . Hence, we need to transform Hd by
calling function ITSQ to incorporate the effects of T 00i ,
yielding H 00d . Now H 0i 7! H 00d holds.

Second, to integrate Td, we first extract all operations in
H 0i that are concurrent with Td, resulting in csqd. Note that
csqd and csqi have exactly the same set of operations.

However, as a result of merging Ti in step 4, operations in
csqd already include the effects of Ti, and hence, the two
sequences Td and csqd are relative to the same definition
state, that is, Td t csqd. Now calling function ITSQ, we first
incorporate effects of csqd into Td, yielding T 00d , and then,
incorporate effects of H 00d into T 00d , yielding T 0d. After that, we
call mergeSQ to merge T 0d into H 00d , yielding H 0d.

When Algorithm 1 returns, we have fulfilled the first
goal of transforming T with H such that T 0 ¼ T 0i � T 0d can be
executed in current state, and the second goal of merging T
such that H is updated to H 0 ¼ H 0i �H 0d. In the rest of this
section, we will explain the three functions, namely,
getConcurrentSQ, ITSQ, and mergeSQ.

4.3 Extract Concurrent Subsequence

Algorithm 2 extracts all operations that are concurrent with
sequence T from sequence isq. Input T is a transactional
sequence and input isq is an insertion sequence that is
ordered by the effects relation. The output csq is a sequence
in which all operations are concurrent with T and ordered
by the effects relation.

Algorithm 2. getConcurrentSQðT; isqÞ : csq

1: csq ½ �
2: for (j 0; j < jisqj; jþþ) do

3: if (isq½j� k T) then

4: csq ¼ csq � isq½j�
5: end if

6: end for

7: return csq

By discussions in Section 4.2, any operation in isq either
happens before T or is concurrent with T . For example,
without loss of generality, let it be [h1; c1; h2; c2; h3], where
h1; h2; h3 happen before T and c1; c2 are concurrent with T .
Conceptually, we have to transpose these operations such
that the result isq0 ¼ ½h01; h02; h03; c01; c02�. That is, [h01; h

0
2; h

0
3] 7!

[c01; c
0
2], meaning that all those that happen before T are

contextually serialized before all those that are concurrent
with T . To achieve so, we need to “swap” every hi with
every cj on its left.

As in [8], a transposition algorithm could be devised as
follows: let csq hold the partial results; scan isq from left to
right, for every isq½j�, if isq½j� k T , append it to csq; or if
isq½j� ! T , swap it with every operation in csq right to left.
The time complexity is Oðjisqj2Þ.

However, this process can be greatly simplified if we
consider the property of input isq that all operations are
insertions and ordered by the effects relation. By this
property, for any oi ¼ isq½i�, we have the effects relation
oi � oiþ1, where 0 � i < iþ 1 < jisqj. Swapping oi and oiþ1

means that in an alternative execution order, oiþ1 is
executed before oi. Swapping execution order of two
operations should not change the effects relation. For
example, consider state “abc.” After executing sequence
[ins(1,x), ins(3,y)], the state becomes “axbyc.” Transposing
these two operations results in sequence [ins(2,y), ins(1,x)],
which applied on “abc” yields the same state “axbyc.” More
generally, let [o0iþ1; o

0
i] be the result of swapping [oi; oiþ1].

The relation between their positions must be o0i:pos ¼ oi:pos
and o0iþ1:pos ¼ oiþ1:pos� 1. That is, the swapping changes
oiþ1:pos but not oi:pos.

1712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

This property leads to the following simplification of
algorithm: each time an operation isq½j� ! T is swapped
with the partial result csq, the swapping does not affect the
positions of operations in csq. Also, note that we do not
really need those operations in isq that happen before T .
Therefore, we just need to directly pick up those in isq that
are concurrent with T . This is exactly how Algorithm 2 is
designed. Obviously, its time complexity is OðjisqjÞ.

4.4 Transform Two Sequences

Function ITSQ(sq1; sq2) inclusively transforms sequence sq1

with sq2, i.e., to incorporate the effects of sq2 into sq1. The
precondition is sq1 t sq2, meaning that the two input
sequences are defined in the same state. The postcondition
is sq2 7! sq01, meaning that the output sequence sq01 is as if it
were to be executed after sq2.

By operation types of the two input sequences, we can
define four ITSQ functions. We first define function ITSQii
for transforming two insertion sequences, as in Algorithm 3.
The other three, ITSQid, ITSQdi, and ITSQdd, can be
defined similarly. In principle, we need to transform every
sq1½j� with every sq2½i�. However, some of the transforma-
tions can be saved because the two input sequences are
ordered by the effects relation.

Algorithm 3. ITSQiiðsq1; sq2Þ : sq01
1: i 0; j 0; sq01 sq1

2: while (i < jsq2j) and (j < jsq1j) do

3: ipos sq2½i�:pos� i
4: jpos sq1½j�:pos� j
5: if ipos < jpos then

6: i iþ 1

7: else if (ipos ¼ jpos) and (sq2½i�:id < sq1½j�:id) then

8: i iþ 1

9: else

10: sq01½j�:pos sq01½j�:posþ i
11: j jþ 1

12: end if

13: end while

14: for (; j < jsq1j; j++) do

15: sq01½j�:pos sq01½j�:posþ i
16: end for

17: return sq01

For any two given operations sq1½j� and sq2½i�, we can
directly transform sq1½j� with sq2½i� only when they are
defined in the same state and their positions can be
compared. Consider these two sequences are defined in
the same state and operations in these two sequences are
contextually serialized. To bring sq1½j� and sq2½i� to the same
state, we only need to swap sq1½j� to the front of sq1 and also
swap sq2½i� to the front of sq2. By how the operations are
ordered in sq1, we know that all operations ordered on the
left of sq1½j� have effect objects that precede the effect object
of sq1½j�. So, the swapping results in operation sq1½j�0 such
that sq1½j�0:pos ¼ sq1½j�:pos� j to account for the j objects on
its left. For the same reason, swapping sq2½i� results in
operation sq2½i�0 such that sq2½i�0:pos ¼ sq2½i�:pos� i.

Let ipos ¼ sq2½i�0:pos and jpos ¼ sq1½j�0:pos. With every
sq1½j�, as in lines 5-8, we fix cursor j on sq1 and move cursor
i on sq2 until we have identified all operations in sq2 whose
effect objects precede that of sq1½j�. Then, as in line 10,
we shift sq1½j�:pos to account for those i operations. There

are two cases in which sq2½i� � sq1½j�: 1) ipos < jpos, since
now they are defined in the same state and can be
compared; and 2) ipos ¼ jpos and sq2½i�.id < sq1½j�.id,
meaning that there is a tie and we break the tie by
comparing their site ids. It is worth noting, however, that
the tie cannot always be broken this way. In Section 7, we
will discuss the correctness conditions.

Algorithm 4. mergeISQðsq1; sq2Þ: sq
1: sq ½ �; i 0; j 0

2: while (i < jsq2j) and (j < jsq1j) do

3: if (sq2½i�:pos� i � sq1½j�:pos) then

4: sq sq � sq2½i�
5: i iþ 1

6: else

7: sq1½j�:pos sq1½j�:posþ i
8: sq sq � sq1½j�
9: j jþ 1

10: end if

11: end while

12: for (; i < jsq2j; iþþ) do

13: sq sq � sq2½i�
14: end for

15: for (; j < jsq1j; jþþ) do

16: sq1½j�:pos sq1½j�:posþ i
17: sq sq � sq1½j�
18: end for

19: return sq

4.5 Merge Two Sequences

Function mergeSQ(sq1; sq2) merges sequences sq1 and sq2

into a new sequence sq. The two input sequences are
ordered by the effects relation and sq1 7! sq2. The output
sequence sq is effect-equivalent with sq1 � sq2. That is, if sq1 is
defined in state s0 and the state becomes s1 after execution
of sq1 � sq2, then it will also become s1 after execution of sq in
s0. Here, we only specify function mergeISQ as in
Algorithm 4, which merges two insertion sequences. The
mergeDSQ function for merging two deletion sequences can
be specified similarly.

The structure of Algorithm 4 is similar to that of the
classic two-way merge algorithm, since the two input
sequences are ordered. However, some transformation is
required so as to make comparisons between any two given
operations sq1½j� and sq2½i�. This is achieved as follows: First,
we swap sq1½j� to the end of sq1. In this process, sq1½j�:pos
remains as-is. Second, we swap sq2½i� to the front of sq2. In
this process, sq2½i�:pos is shifted to account for the i
operations on its left, resulting in sq2½i�0:pos ¼ sq2½i�:pos� i.
The reasons are similar to what have been explained above
in Sections 4.3 and 4.4.

After the above transformation, sq1½j� 7! sq2½i�0, the two
insertions are defined in two adjacent states, respectively, and
we can compare their positions. Because they are insertions
that are executed in tandem, if sq2½i�0:pos � sq1½j�:pos, the
effect object of sq2½i�0 should precede that of sq1½j�. Hence, in
the resulting sequence, sq2½i� should be ordered before sq1½j�.
On the other hand, if sq2½i�0:pos > sq1½j�:pos, the effect object of
sq2½i�0 should go after that of sq1½j�, and hence, sq2½i� should be
ordered after sq1½j� in the resulting sequence. However, to

SHAO ET AL.: A FAST OPERATIONAL TRANSFORMATION ALGORITHM FOR MOBILE AND ASYNCHRONOUS COLLABORATION 1713

account for the i operations in sq2 that have been placed on its
left, we need to adjust sq1½j�:pos by i, as in line 7.

5 OBTAINING TRANSACTIONAL SEQUENCES

At each site, remote transactions are not merged until the
current local transaction is ended and submitted. We first
overview how to obtain transactional sequences. Then, we
present related algorithms.

5.1 Overview

Some work could be done at the user interface level to help
the user make informed decisions as to when the current
local transaction should be ended and submitted and when
remote transactions should be integrated. For example,
previous work [27] proposes to visualize approximately
which regions in a file have been modified by local and
remote users. By heuristics, concurrent edits that happen on
overlapping regions may conflict and should be merged
sooner. Based on this information, the user can roughly tell
whether the remote transactions are interesting or not and
when to perform merging.

In general, there are two approaches to obtaining a
transactional sequence T . First, in case that the system does
not provide mechanisms for tracking exactly what update
operations are performed by the user, diffing [28] can be
used to compute an edit script. The resulting edit script on a
text file is a sequence of insertions and deletions ordered by
their positions. An algorithm can be devised to transform
the script into a sequence T ¼ Ti � Td in which Ti and Td are
ordered by the effects relation. This approach is taken in our
early work [27]. The disadvantages are that diffing can be
expensive and an edit script is not the exact user operations.

Second, in case the system is able to track the exact
update operations, we record them in buffer T that is
maintained as Ti � Td. Every time a new local operation o is
performed, property (Ti � Td) 7!o must hold; If o:type ¼ del,
we swap o with operations in Td right to left until it can be
added in the right position in Td; if o:type ¼ ins, we first
swap o with Td, and then, with Ti right to left until it can be
added in the right position of Ti. When a transaction is
ended, function endTransaction(T;H) is invoked to merge
T into the local history H, and meanwhile, transform T with
H. After that, the resulting sequence T 0 is propagated to
remote sites. We omit the algorithms for integrating a local
operation into T due to their simplicity.

5.2 Submit a Local Transaction

Function endTransaction is specified in Algorithm 5. The two
input sequences are T ¼ Ti � Td and H ¼ Hi �Hd, each of the
four subsequences being ordered by the effects relation.
Since no new remote transaction has been integrated before
this function is called, the history H does not include
operations concurrent with T . The precondition is H 7! T .
When the function returns, T is merged into H 0, T 0 ¼ T 0i � T 0d
and H 0 ¼ H 0i �H 0d. The postconditions are that H 0 is effect-
equivalent with (H � T) and the effects of Hd are excluded
from T 0. Note that the latter satisfies the precondition of
Algorithm 1. Now T 0 is ready for propagation.

In Algorithm 5, we first swapHd andTi to obtainT 0i andH 00d .
Since Hi 7! Hd 7! Ti 7! Td, we have Hi 7! T 0i 7! H 00d 7! Td.
Then, we swap H 00d with Td to obtain T 0d and H 000d , by which

we have Hi 7! T 0i 7! T 0d 7! H 000d . Now we have achieved the
first goal of the algorithm, i.e., to obtain T 0 ¼ T 0i � T 0d in which
the effects of all deletions that happen before T are excluded.
Next, we merge T 0i intoHi, yieldingH 0i, and merge Td intoH 00d ,
yieldingH 0d. As discussed in Section 4.5, the preconditions of
these two merging steps are Hi 7! T 0i and H 00d 7! Td, respec-
tively, which are satisfied. As a result, we fulfill the second
goal of Algorithm 5, i.e., to merge T into H.

Algorithm 5. endTransactionðT;HÞ: ðT 0; H 0Þ
1: ðT 0i ; H 00d Þ swapSQdiðHd; TiÞ
2: ðT 0d;H 000d Þ swapSQddðH 00d ; TdÞ
3: H 0i mergeISQðHi; T

0
i Þ

4: H 0d mergeDSQðH 00d ; TdÞ
5: return (T 0i � T 0d, H 0i �H 0d)

5.3 Swap Two Sequences

Now, we specify the two swap functions called in Algorithm
5. Not to be tedious, we only explain function swapSQdi for
swapping a deletion sequence and an insertion sequence.
Function swapSQdd for swapping two deletion sequences can
be defined similarly.

As in Algorithm 6, function swapSQdi(sq2; sq1) swaps the
execution order of the two input sequences. The precondi-
tion is sq2 7! sq1, where operations in each sequence are of
the same type and ordered by the effects relation. The
postcondition is sq01 7!sq02.

Algorithm 6. swapSQdiðsq2; sq1Þ : ðsq01; sq02Þ
1: i 0; j 0; sq01 sq1; sq02 sq2

2: while (i < jsq2j) and (j < jsq1j) do

3: if (sq2½i�:pos < sq1½j�:pos� j) then

4: sq02½i�:pos sq02½i�:posþ j
5: i iþ 1

6: else

7: sq01½j�:pos sq01½j�:posþ i
8: j jþ 1

9: end if

10: end while

11: for (; j < jsq1j; jþþ) do

12: sq01½j�:pos sq01½j�:posþ i
13: end for

14: for (; i < jsq2j; iþþ) do

15: sq02½i�:pos sq02½i�:posþ j
16: end for

17: return ðsq01; sq02Þ
Conceptually, we would have to swap every sq1½j� with

the entire sq2 right to left. However, this can be simplified
because the two sequences are ordered by the effects
relation. For any given sq1½j� and sq2½i�, we do the following
two steps: First, swap sq2½i� to the end of sq2. Because its
effect object precedes those of the operations on its right, its
position remains as-is, i.e., sq2½i�0:pos ¼ sq2½i�:pos. Second,
swap sq1½j� to the front of sq1. Because its effect object
follows those of the operations on its left, its position must
be shifted by j to account for those j operations, i.e.,
sq1½j�0:pos ¼ sq1½j�:pos� j. As a result, sq2½i�0 7!sq1½j�0 and
their positions can be compared.

Now we swap these two operations. Let oi ¼ sq2½i�0 and
oj ¼ sq1½j�0. The conditions are oi:type ¼ del, oj:type ¼ ins,
and oi 7! oj. We need to consider three cases:

1714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

First, if oi:pos < oj:pos, it means that after oi.c is deleted,
oj.c is inserted on the right side of position oi:pos. That
is, oi � oj. Hence, if oj is executed earlier than oi, the position
of oj should be shifted because oi.c is not deleted yet, whereas
oi:pos should remain as-is because the earlier execution of oj
on the right does not change the position of oi.c.

Conversely, if oi:pos > oj:pos, it means that oj � oi.
Hence, if oj is executed earlier, oj:pos should remain the
same because the deferred execution of oi has no impact,
whereas oi:pos should be shifted because oj.c has been
inserted on the left of oi.c.

On the other hand, if oi:pos ¼ oj:pos, it means that, after
oi.c is deleted, oj.c is inserted at the same position. By
analysis in Section 5.2, we know that oi ! oj. According to
proofs in [12], under this condition, we can safely mandate
the effects relation such that the inserted object precedes the
deleted object, that is, oj � oi. As a result, if we swap the
execution order and oj is executed earlier, oj:pos should
remain as-is, whereas oi:pos is shifted.

Therefore, in Algorithm 6, the condition in line 3
corresponds to the first case, oi � oj, by which oj:pos should
be shifted; the condition in line 6 corresponds to the second
and third cases, oj � oi, by which oi:pos should be shifted.

We explain the loop in lines 2-10 as follows: On the one
hand, in lines 6-8, for a given oi in sq2, scan sq1 left to right
until all operations that precede oi in the effects relation are
found; for each oj: oj � oi, we do not need to shift oj:pos
with regard to oi; however, we need to account for the i

operations in sq2 that have already been in place in sq02 and
whose effects precede oj; hence, we still need to shift oj:pos

by i positions (as in line 7).
On the other hand, similarly, in lines 3-5, for a given oj in

sq1, scan sq2 left to right until all operations that precede oj
in the effects relation are found, and for each oi such that
oi � oj, shift oi:pos by j to account for those j operations that
have already been in place (line 4).

6 AN EXAMPLE

As an example, consider a scenario in which two users,
Alice and Bob, are coauthoring a document. Suppose that
the initial state is a string “abcd.” As shown in Fig. 2, Alice
submitted one transaction T1 and Bob submitted two
transactions T2 and T3. The temporal relation between them
is T1 k ðT2 ! T3Þ. In the following, we study how these
transactions are processed at local sites and integrated at
remote sites.

6.1 Processing Local Transactional Sequence

Site A. Alice changes the document from “abcd” to “pabq”
by performing the following sequence of operations:
½insð0; pÞ; delð4Þ; delð3Þ; insð3; qÞ�. As the operations are
performed, the sequence is reordered into an effect-
equivalent transactional sequence T1:

T1 ¼ ½insð0; pÞ; insð3; qÞ; delð4Þ; delð4Þ�:

When T1 is submitted, the local history is empty. As a result,
HA ¼ T1 and T1 is propagated as-is.

Site B. Bob first changes “abcd” into “xd” by performing
½delð1Þ; delð1Þ; insð1; xÞ; delð0Þ�. It is reordered into a transac-
tional sequence T2 (operations in which accidentally have
the same position parameters):

T2 ¼ ½insð1; xÞ; delð0Þ; delð1Þ; delð1Þ�:

When T2 is submitted, the local history is empty. Hence, we
get HB ¼ T2 and propagate T2 as-is.

Later, Bob changes “xd” into “yzd” by performing the
following sequence: ½insð1; zÞ; delð0Þ; insð0; yÞ�. It is reor-
dered into a transactional sequence T3:

T3 ¼ ½insð0; yÞ; insð2; zÞ; delð1Þ�:

Then, Algorithm 5 is called to integrate T3 into local
history HB and produce a transformed transactional
sequence that is to be propagated to site A. As a result,
the effects of deletions in the local history are excluded from
T3 and T3 is merged into the history. The resulting T3 and
history HB ¼ HB

i �HB
d are as follows:

T3 ¼ ½insð0; yÞ; insð3; zÞ; delð2Þ�;
HB
i ¼ ½insð0; yÞ; insð2; xÞ; insð3; zÞ�;

HB
d ¼ ½delð1Þ; delð1Þ; delð2Þ; delð2Þ�:

6.2 Processing Remote Transactional Sequence

Site A. Algorithm 1 is called to integrate T2, which
transforms it into an executable form T 02 and merges it with
HA yielding HA0 ¼ HA0

i �HA0

d , as follows:

T 02 ¼ ½insð2; xÞ; delð1Þ; delð2Þ�;
HA0

i ¼ ½insð0; pÞ; insð2; xÞ; insð4; qÞ�;
HA0

d ¼ ½delð1Þ; delð2Þ; delð3Þ; delð3Þ�:

After executing T 02 on Alice’s document, it becomes
“pxq.” Later, when T3 is integrated, the results T 03 and HA00 ¼
HA00

i �HA00

d are as follows:

T 03 ¼ ½insð1; yÞ; insð3; zÞ; delð2Þ�;
HA00

i ¼ ½insð0; pÞ; insð1; yÞ; insð3; xÞ; insð4; zÞ; insð6; qÞ�;
HA00

d ¼ ½delð2Þ; delð2Þ; delð3Þ; delð4Þ; delð4Þ�:

Executing T 03 on Alice’s document yields “pyzq.”
Site B. When T1 is integrated, the results T 01 and history

HB0 ¼ HB0

i �HB0

d are as follows:

T 01 ¼ ½insð0; pÞ; insð3; qÞ; delð4Þ�;
HB0

i ¼ ½insð0; pÞ; insð1; yÞ; insð3; xÞ; insð4; zÞ; insð6; qÞ�;
HB0

d ¼ ½delð2Þ; delð2Þ; delð3Þ; delð4Þ; delð4Þ�:

SHAO ET AL.: A FAST OPERATIONAL TRANSFORMATION ALGORITHM FOR MOBILE AND ASYNCHRONOUS COLLABORATION 1715

Fig. 2. Alice submitted sequence T1 and Bob submitted two sequences
T2 and T3.

Executing T 01 changes Bob’s document to “pyzq,” which is
identical with the final state of Alice.

7 ANALYSIS OF CORRECTNESS

In this section, we explain why the presented algorithm is
correct and why it is so designed. Our early work has
incrementally built formal, provable correctness conditions
for OT algorithms [16], [21], [12]. In particular, our latest
theoretical work [12], [13] establishes the following two
formal conditions, which implies convergence:

1. Causality Preservation: the happens-before relation
between operations is always maintained whenever
an operation is executed.

2. Admissibility Preservation: the execution of every
operation is admissible, i.e., it does not introduce
inconsistent ordering of objects in the shared data at
different sites.

Condition (1) is satisfied by using vector time stamps.
This part is omitted from the algorithm presentation since it
is well understood [7], [10]. To satisfy condition (2), our
approach is to first prove sufficient conditions of the basic
IT and swap functions, and then, design a control
procedure that ensures them while integrating local and
remote operations. Assuming that the two input operations
o1 and o2 are admissible, we have proved the following two
sufficient conditions [12], [13]:

1. IT(o1; o2) is admissible if o1 t o2 and in case they are
both insertions and o1:pos ¼ o2:pos, o1 k o2 and
neither includes effects of any deletions.

2. swap(o1; o2) is admissible if o1 7! o2 and in case o1 is
a deletion and o2 is an insertion, and o1:pos ¼ o2:pos,
o1 ! o2 holds and o2 has not been transformed with
any concurrent operations.

When presenting the algorithms, we have explained
what the preconditions are and how they are satisfied in the
main steps. More formally, we prove the correctness of
ABST through the following lemmas and theorem:

Lemma 7.1. The invocations of the sequence transformation
function ITSQ are admissible in ABST.

Proof. The purpose of ITSQ(sq1; sq2), where sq1 t sq2, is to
incorporate the effects of sq2 in sq1 such that sq2 7! sq01
holds for the resulting sequence sq01. Every operation
sq1½j� is transformed by a series of calls to the above two
basic swap and IT functions, as follows:

1. swap sq1½j� to the front of sq1;
2. inclusively transform sq1½j� with operations in sq2;
3. swap sq1½j� back to its original position in sq1.

Take function ITSQii (Algorithm 3) as the example.
Step 1 is achieved by line 4; step 2 is achieved in lines 5-
12 and 14-16 which shift the position of sq1½j� only on
those operations in sq2 whose effects precede that of
sq1½j�; and step 3 is implied in line 10.

Since swap is always called between adjacent opera-
tions in sq1, which are of the same type, steps 1 and 3 are
admissible by condition 2.

In Algorithm 1 when ITSQ(Ti; csqi) is called (line 2),
Ti t csqi, Ti k csqi, and insertions in neither Ti nor csqi

include effects of any deletions. Hence, by condition 1, it
is safe to break the position tie between two insertions
and the IT in step 2 is admissible. When the other ITSQs
are called in Algorithm 1 (lines 3, 5, 7, and 8), at least one
of the input sequences is deletion. Therefore, their ITs in
step 2 are admissible also by condition 1. tu

Lemma 7.2. The invocations of the sequence swapping function

swapSQ are admissible in ABST.

Proof. The proof is similar to that of Lemma 7.1 as above.
Take function swapSQdi (Algorithm 6) as the example.
Function swapSQdi(sq2; sq1), where sq2 7! sq1, is essen-
tially a series of calls to the basic swap and IT functions:
For every sq1½j�, 1) swap it with operations in sq2 and
2) incorporate the effects of operations in sq2 that precede
the effect of sq1½j�. The latter is actually not the exact basic
IT function but a variation of IT.

Since the two input sequences are already ordered,
part 1) can be simplified by swapping sq1½j� to the front
of sq1 and swapping sq2½i� to the end of sq2. When
swapSQdi(Hd; Ti) is called in Algorithm 5, Ti is a newly
generated transactional sequence, the operations in Ti
have not been transformed with any concurrent opera-
tions. Hence, H 7! T and H ! T hold. These swap
operations are admissible by condition 2.

Part 2) is semantically the same as inclusion transfor-
mation (IT) since it incorporates the effects of sq2 into
sq1½j�. However, the difference is that the two operations
sq1½j� and sq2½i� involved in every step satisfy
sq2½i� 7! sq1½j� rather than sq2½i� k sq1½j�. The upside is
that, because sq2½i�7!sq1½j�, there is no ambiguity when
determining the effects relation of these two operations.
The case of sq2½i� k sq1½j� is actually more complicated in
IT, as suggested in condition 1, because the effects
relation is ambiguous when the two insertions tie. As a
result, the output of part 2) is also admissible. tu

Lemma 7.3. The invocations of the sequence merging function

mergeSQ are admissible in ABST.

Proof. The proof is similar to those of Lemmas 7.1 and 7.2
since the merging process is essentially also a series of
calls to the basic swap function and a variation of the
basic IT function. Hence, we omit the details. tu

Theorem 7.4. The ABST algorithm is correct with regard to

1) the causality preservation condition and 2) the admissibility

preservation condition.

Proof. The ABST algorithm mainly consists of two parts:
processing a local transactional sequence (Algorithm 5)
and processing a remote transactional sequence (Algo-
rithm 1). As explained in Section 4, when a remote
transactional sequence T is integrated, it must be causally
ready, which satisfies condition 1). By Lemmas 7.1, 7.2,
and 7.3, invocations of all the key steps ITSQ, swapSQ,
and mergeSQ in Algorithms 5 and 1 are admissible.
Hence, condition 2) is also satisfied. tu

The sufficient condition 1 for IT explains why we
maintain the history H as Hi �Hd at every site. One of the
most challenging problems in OT is how to break ties in IT
functions, as revealed in [10], [16], [12], [21], [20]. By

1716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

maintaining H this way, we ensure the correctness of IT
[12]. As analyzed in Sections 8 and 2, this does not
undermine efficiency. In fact, ABST is more efficient than
its competitors even though H is so maintained.

8 COMPLEXITIES AND PERFORMANCE

The space complexity of ABST is trivially OðjHj þ jT jÞ. The
time complexity of integrating either a local transaction or a
remote transaction is OðjHj þ jT jÞ.

As argued in Section 2.3.2, we chose to compare the
performance of ABST against our own prior work ABT [12],
[13] because ABT is formally proved, fully presented, and
more efficient than its competitors. Nevertheless, its time
complexity isOðjHj3Þwhen integrating a remote sequence T
with history H, and jT j and jHj are comparable. To obtain a
more concrete sense of what the performance implications are
in real applications, we conducted the following experiments.

We implemented ABT and ABST in C#. The experiments
are performed on two mobile devices:

. Experiments on N810: The algorithms are compiled
using Maemo Mono C# and executed on a Nokia
N810 tablet, with a 400 MHz ARM v61 CPU (TI
OMAP 2,420) and 128 MB DDR RAM. The OS is
Maemo Linux with kernel 2.6.21-omap1.

. Experiments on nx5000: The algorithms are compiled
using Linux Mono C# and executed on an HP laptop
Compaq nx5000, with a 1.50 GHz Intel(R) Pen-
tium(R) M CPU and 512 MB DDR RAM. The OS is
Arch Linux with kernel 2.6.28.

The experiments are designed to study how long it takes
to integrate a remote sequence T , which is dominated by
function Integrate(T;H). In each experiment, we generate
two sequences H and T such that T k H. Then, ABT and
ABST are called to integrate T with H, respectively. The
positions of the operations in each sequence are roughly
uniformly distributed over the shared document D. That is,
each operation is generated with probability 1

jDj in any
position in the current document and jDj � jHj þ jT j. The
size of each sequence is varied from 0 to 3,000, with step 300.
The percentage of insertions in each sequence is 20, 50, or
80 percent, implying that the deletion ratio is accordingly 80,
50, or 20 percent. For every given T and H, Integrate(T;H) is
executed five times and the average time is recorded.

The experimental results for the N810 tablet are shown in
Fig. 3. With similar observations, we omit the curves for the
nx5000 laptop. Some selected data points for both devices
are shown in Table 2. The data clearly show that ABST is
faster than ABT by several orders of magnitude. For
example, when jT j ¼ 3;000, jHj ¼ 3;000, and the insertion
ratio is 80 percent, it takes 3,563,556 ms or over 59 minutes
in ABT versus 1,452 ms or less than 1.5 seconds in ABST to
integrate T with H on N810.

Our data suggest that ABST is efficient enough to
support a range of mobile and asynchronous collaboration
tasks. Intuitively, an algorithm that is efficient to integrate a
long sequence must be efficient to integrate a short
sequence or a single operation. The time complexity for
the latter case is OðjHjÞ as well, which excels most existing
OT algorithms that take OðjHj2Þ or more time to integrate

one remote operation. That is, ABST is also efficient enough
for real-time collaboration tasks that feature frequent
propagation and integration of operations in small batches
[23]. Therefore, ABST can facilitate a wide spectrum of
synchronous to asynchronous tasks.

9 DISCUSSION: CONFLICT DETECTION

Consistency maintenance in collaborative applications oc-
curs at two levels, namely, syntactic and semantic consis-
tency [8]. In general, the former addresses how to achieve
the same view of shared data at all sites, whereas the latter
further constrains the converged view such that it makes
sense in the context of specific applications. Traditionally,
the scope of OT has been limited to syntactic consistency [8]
and so is this work. Detection and resolution of conflicts are
part of semantic consistency control. Policies and mechan-
isms for conflict handling are necessarily application-
specific. Different types of files, such as research articles,
software programs, and Web pages, have different require-
ments for semantic consistency, e.g., grammar rules.

In real life, there is usually a division of labor and the
users follow well-understood procedures or social conven-
tions when making changes to shared files. For example,
when coauthoring an article, a user would consciously
avoid modifying a section if she knows that a collaborator is
working on that section. Hence, concurrent updates to
exactly the same word or sentence do not happen
frequently in practices [30].

Nevertheless, we follow the same direction as in
previous OT works by augmenting algorithms with user
interfaces. For example, as in [27], when a remote sequence
is received (and before it is merged), the regions of the file
modified by remote and local sequences are marked in
different colors. Based on the visual cues, the user can often
easily tell approximately whether there are conflicts or not
and when to resolve them.

Furthermore, we can provide additional interfaces for
users to define their own conflict detection policies.
Detection of conflicts can happen either before merging,
as explained above, or after (fully automated) merging. Our
method assumes that the probability of semantic conflicts
increases as the positions of two concurrent updates get
closer to each other. Since this is not the focus of this paper,
we only outline the ideas, as follows:

First, at the macroscopic level, we consider two concurrent
sequences sq1 and sq2 for the same file, each being of the same
operation type and sq1 t sq2. The operations are ordered by
the effects relation. Let a1 ¼ sq1½0�:pos, b1 ¼ sq1½jsq1j � 1�:pos,
a2 ¼ sq2½0�:pos, and b2 ¼ sq2½jsq2j � 1�:pos. Then, the spatial
spans of sq1 and sq2 areL1 ¼ b1 � a1 þ 1 andL2 ¼ b2 � a2 þ 1,
respectively. The distance between their boundaries is
d ¼ j 12 ða2 þ b2Þ � 1

2 ða1 þ b1Þj � 1
2L1 � 1

2L2. In particular, if
d � 0, then sq1 and sq2 touch or overlap each other.
Intuitively, the smaller the distance d, the higher the
probability of the potential conflicts. The user can define an
application-specific threshold DðD � 0Þ. If d � D, the users
are notified of potential conflicts on the file and the two
conflicting regions are highlighted.

Second, at the microscopic level, from two given
sequences sq1 and sq2 that satisfy the same conditions as
above, we can pick up every pair of operations sq1½i� and
sq2½j� that potentially conflict. For example, suppose that

SHAO ET AL.: A FAST OPERATIONAL TRANSFORMATION ALGORITHM FOR MOBILE AND ASYNCHRONOUS COLLABORATION 1717

they are both insertions. Similarly to Algorithm 3, we first
swap them to the front of sq1 and sq2, respectively. Let
ipos ¼ sq1½i�:pos� i and jpos ¼ sq2½j�:pos� j. Consider their
distance d ¼ jipos� jposj. When d � T , where T is a user-
specified threshold, there is a potential conflict between the
two operations. All those pairs can be collected and
reported to the user graphically.

Note that the above thresholds D and T are integers that
account for the number of characters. With some extensions,
the algorithms and thresholds can also address strings and
semantic units such as words, sentences, paragraphs, and

sections. The user can define rules for conflict detection in a
continuous spectrum of granularity in terms of distance
between update positions.

10 CONCLUSIONS

This paper presents an efficient OT-based algorithm called
ABST for merging sequences of updates to the same file.
ABST improves the time complexity of the state of the art
from OðjHj3Þ to OðjHjÞ, where H is the operation history.
Practically, it can take hours in previous work versus seconds

1718 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

Fig. 3. The time to integrate T with H on a Nokia N810 tablet using ABT and ABST under varying insertion rations: (a) ABT with 20 percent insertions,
(b) ABST with 20 percent insertions, (c) ABT with 50 percent insertions, (d) ABST with 50 percent insertions, (e) ABT with 80 percent insertions, and
(f) ABST with 80 percent insertions.

in this work to merge two long sequences on a mobile device.
The linear complexity of ABST makes it possible to support a
wide spectrum of synchronous to asynchronous collabora-
tion tasks on resource-constrained platforms such as cell
phones. The algorithm can be used in custom collaborative
applications that are able to track editing operations (e.g.,
[10]) as well as legacy applications that are adapted to be
collaborative without modifying source code (e.g., [19], [27]).
Based on the algorithm, it is possible to define a spectrum of
policies for conflict detection.

The focus of this paper is on the efficiency aspect of the
presented ABST algorithm, not how it can be effectively
used in practical applications such as collaborative editing
systems. We plan to extend this work along two directions:
First, on the theoretical side, we will extend the algorithm to
support selective undo of any operation or sequence, which
is a useful building block for error recovery and conflict
resolution [20], [31]. Second, on the application side, it is
possible to build the extended algorithms into industry
products on mobile and Web platforms. In the background
of specific applications, we will be in a better position to
research on domain-specific conflict handling mechanisms
and study their usability.

ACKNOWLEDGMENTS

The authors thank the anonymous expert reviewers for
their very insightful and constructive comments. Yiming
Ma and Guang Yang at Nokia Research Center, Palo Alto,
and Chengzheng Sun at Nanyang Technological University,
Singapore, also provided valuable feedback. The work is
supported by the National Natural Science Foundation of
China (NSFC) under Grant No. 60736020 and No. 60803118,
the National Grand Fundamental Research 973 Program of
China under Grant No. 2005CB321905, the Shanghai
Science & Technology Committee Key Fundamental Re-
search Project under Grant No. 08JC1402700, and the
Shanghai Leading Academic Discipline Project under Grant
No. B114. This paper is substantially extended from its
conference version [1].

REFERENCES

[1] B. Shao, D. Li, and N. Gu, “A Sequence Transformation Algorithm
for Supporting Cooperative Work on Mobile Devices,” Proc. ACM
Conf. Computer-Supported Cooperative Work (CSCW), pp. 159-168,
Feb. 2010.

[2] Y. Saito and M. Shapiro, “Optimistic Replication,” ACM Comput-
ing Survey, vol. 37, no. 1, pp. 42-81, Mar. 2005.

[3] J. Kistler and M. Satyanarayanan, “Disconnected Operation in the
Coda File System,” ACM Trans. Computer Systems, vol. 10, no. 1,
pp. 3-25, Feb. 1992.

[4] K. Petersen, M.J. Spreitzer, D.B. Terry, M.M. Theimer, and A.J.
Demers, “Flexible Update Propagation for Weakly Consistent
Replication,” Proc. 16th ACM Symp. Operating Systems Principles,
pp. 288-301, 1997.

[5] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek,
“Rumor: Mobile Data Access through Optimistic Peer-to-Peer
Replication,” Proc. 17th Int’l Conf. Conceptual Modeling (ER ’98):
Workshop Mobile Data Access, 1998.

[6] A.-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel, “The
IceCube Approach to the Reconciliation of Divergent Replicas,”
Proc. 20th Ann. ACM Symp. Principles of Distributed Computing
(PODC ’01), pp. 210-218, 2001.

[7] C.A. Ellis and S.J. Gibbs, “Concurrency Control in Groupware
Systems,” Proc. ACM SIGMOD ’89, pp. 399-407, 1989.

[8] C. Sun and C. Ellis, “Operational Transformation in Real-Time
Group Editors: Issues, Algorithms, and Achievements,” Proc.
ACM Conf. Computer-Supported Cooperative Work, pp. 59-68, Dec.
1998.

[9] C.M. Hymes and G.M. Olson, “Unblocking Brainstorming
through the Use of Simple Group Editor,” Proc. ACM Conf.
Computer-Supported Cooperative Work (CSCW ’92), pp. 99-106, Nov.
1992.

[10] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
Convergence, Causality-Preservation, and Intention-Preservation
in Real-Time Cooperative Editing Systems,” ACM Trans. Compu-
ter-Human Interaction, vol. 5, no. 1, pp. 63-108, Mar. 1998.

[11] A.H. Davis, C. Sun, and J. Lu, “Generalizing Operational
Transformation to the Standard General Markup Language,”
Proc. ACM Conf. Computer-Supported Cooperative Work (CSCW ’02),
pp. 58-67, Nov. 2002.

[12] R. Li and D. Li, “Commutativity-Based Concurrency Control in
Groupware,” Proc. First IEEE Conf. Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom ’05),
Dec. 2005.

[13] D. Li and R. Li, “An Admissibility-Based Operational Transfor-
mation Framework for Collaborative Editing Systems,” to be
published in Computer Supported Cooperative Work: The J. Colla-
borative Computing, vol. 19, no. 1, pp. 1-43, 2010.

[14] S. Balasubramaniam and B.C. Pierce, “What Is a File Synchroni-
zer?” Proc. ACM/IEEE MobiCom ’98, pp. 98-108, 1998.

[15] V. Gaburici, P. Keleher, and B. Bhattacharjee, “File System
Support for Collaboration in the Wide Area,” Proc. 26th IEEE Int’l
Conf. Distributed Computing Systems (ICDCS ’06), p. 26, 2006.

[16] D. Li and R. Li, “Preserving Operation Effects Relation in Group
Editors,” Proc. ACM Conf. Computer-Supported Cooperative Work
(CSCW ’04), pp. 457-466, Nov. 2004.

[17] Y.-W. Lee, K.-S. Leung, and M. Satyanarayanan, “Operation-
Based Update Propagation in a Mobile File System,” Proc.
USENIX Ann. Technical Conf., June 1999.

[18] M. Suleiman, M. Cart, and J. Ferrié, “Concurrent Operations in a
Distributed and Mobile Collaborative Environment,” Proc. IEEE
Int’l Conf. Data Eng. (ICDE ’98), pp. 36-45, Feb. 1998.

[19] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai, “Transparent
Adaptation of Single-User Applications for Multi-User Real-Time
Collaboration,” ACM Trans. Computer-Human Interaction, vol. 13,
no. 4, pp. 531-582, Dec. 2006.

[20] D. Sun and C. Sun, “Context-Based Operational Transformation in
Distributed Collaborative Editing Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 20, no. 10, pp. 1454-1470, Oct. 2009.

[21] R. Li and D. Li, “A New Operational Transformation Framework
for Real-Time Group Editors,” IEEE Trans. Parallel and Distributed
Systems, vol. 18, no. 3, pp. 307-319, Mar. 2007.

[22] G. Oster, P. Urso, P. Molli, and A. Imine, “Proving Correctness of
Transformation Functions in Collaborative Editing Systems,”
Technical Report 5795, INRIA, Dec. 2005.

[23] D. Li, C. Sun, L. Zhou, and R.R. Muntz, “Operation Propagation in
Real-Time Group Editors,” IEEE Multimedia, special issue on
multimedia computer supported cooperative work, vol. 7, no. 4,
pp. 55-61, Oct.-Dec. 2000.

[24] D. Li and R. Li, “A Performance Study of Group Editing
Algorithms,” Proc. 12th Int’l Conf. Parallel and Distributed Systems
(ICPADS ’06), pp. 300-307, July 2006.

SHAO ET AL.: A FAST OPERATIONAL TRANSFORMATION ALGORITHM FOR MOBILE AND ASYNCHRONOUS COLLABORATION 1719

TABLE 2
A Summary of the Experimental Results

[25] H. Shen and C. Sun, “Flexible Merging for Asynchronous
Collaborative Systems,” Proc. Int’l Conf. Cooperative Information
Systems (CoopIS ’02), pp. 304-321, Oct. 2002.

[26] H. Shen and C. Sun, “A Log Compression Algorithm for
Operation-Based Version Control Systems,” Proc. IEEE Int’l
Computer Software and Application Conf., pp. 867-872, Aug. 2002.

[27] D. Li and J. Lu, “A Lightweight Approach to Sharing Hetero-
geneous Single-User Editors,” Proc. ACM Conf. Computer-Sup-
ported Cooperative Work (CSCW ’06), pp. 139-148, Nov. 2006.

[28] E.W. Myers, “An OðNDÞ Difference Algorithm and Its Varia-
tions,” Algorithmica, vol. 1, pp. 251-266, 1986.

[29] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[30] S. Noel and J.-M. Robert, “Empirical Study on Collaborative
Writing: What Do Co-Authors Do, Use, and Like,” Computer
Supported Cooperative Work: The J. Collaborative Computing, vol. 13,
pp. 63-89, 2004.

[31] B. Shao, D. Li, and N. Gu, “An Algorithm for Selective Undo of
Any Operation in Collaborative Applications,” Proc. ACM Conf.
Supporting Group Work (GROUP), to appear, Nov. 2010.

Bin Shao is currently an Associate Researcher
at Microsoft Research Asia. He received the PhD
degree from the School of Computer Science,
Fudan University, China in June 2010. His
research interests include computer-supported
cooperative work, optimistic replication, opera-
tional transformation, and distributed systems.
He is a member of the IEEE.

Du Li received the PhD degree in computer
science from UCLA in 2000. He is a senior
research scientist in Nokia Research Center,
Palo Alto, California. He was a recipient of a
CAREER Award from the National Science
Foundation in 2002. His research interests
include mobile systems, collaborative sys-
tems, distributed computing, Web 2.0, and
computer-supported cooperative work. More
information about his research is available at

http://www.linkedin.com/in/lidu008. He is a member of the IEEE.

Ning Gu received the PhD degree in computer
science from the Institute of Computing Tech-
nology, Chinese Academy of Sciences, China,
1995. He is a professor and the director of the
Cooperative Information and Systems Lab at the
School of Computer Science, Fudan University,
China. His current research interests include
computer-supported cooperative work, data
management, distributed systems, and social
networking. More information about his research

is available at http://cscw.fudan.edu.cn/. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1720 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 12, DECEMBER 2010

