
A Sequence Transformation Algorithm for
Supporting Cooperative Work on Mobile Devices

Bin Shao
Fudan University
Shanghai, China

binshao@fudan.edu.cn

Du Li
Nokia Research Center

Palo Alto, CA, USA
lidu008@gmail.com

Ning Gu
Fudan University
Shanghai, China

ninggu@fudan.edu.cn

ABSTRACT
Operational transformation (OT) is a promising technique
for supporting collaboration using mobile devices because it
allows users to work on local data replicas even in a discon-
nected mode. However, as work goes mobile, a large num-
ber of operations may accumulate, defying the capacity of
current OT algorithms that are mostly designed for real-time
group editing. Since their assumption is that operations are
propagated frequently, they generally only address how to
integrate one remote operation at a time. As a consequence,
most algorithms take O(|H|2) to integrate one operation and
thus O(|H|3) to integrate a long sequence, where H is the
operation history. This paper proposes a novel algorithm
that provides optimized transformation of long sequences,
improving the time complexity to O(|H|). Our experiments
will show that it takes 59 minutes in a recent algorithm ver-
sus 1.5 seconds in this work to integrate two long sequences
on a mobile device. The performance improvement is criti-
cal towards achieving desired responsiveness and group pro-
ductivity in a class of mobile collaborative applications.

Author Keywords
Collaborative Applications, Data Consistency, Group Edit-
ing, Mobile Computing, Operational Transformation

ACM Classification Keywords
H.5.3 Information Systems: Group and Organization Inter-
faces—Asynchronous Interaction, Computer Supported Co-
operative Work, Collaborative Computing

General Terms
Algorithms, Experimentation, Human Factors, Performance

1. INTRODUCTION
Mobile devices such as laptops, netbooks, PDAs, tablets and
cell phones are becoming pervasive in recent years. They
typically operate on batteries and wireless networks for mo-
bility and their connections are usually intermittent. These
characteristics pose significant challenges on the design of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW 2010, February 6–10, 2010, Savannah, Georgia, USA.
Copyright 2010 ACM 978-1-60558-795-0/10/02...$10.00.

systems that support collaboration using mobile devices [8].
One of the major challenges is data consistency. For per-
formance reasons, optimistic consistency control techniques
[17] are widely used: The shared data is replicated so that the
users are able to work on their local data replicas even when
disconnected and sync with each other when reconnected.

Operational transformation (OT) [3, 22] is an optimistic con-
sistency control technique that has been well-established in
CSCW applications. It allows a distributed group of users
to simultaneously edit shared documents, e.g., Web pages,
software source code, and even music scores [1]. The tech-
nique lies in the heart of many recent products, including
CoWord [24], ACE, Gobby, SubEthaEdit, and the newly-
released Google Wave (which runs on mobile devices). 1

However, most existing OT algorithms are designed for sup-
porting real-time group editing in which operations are fre-
quently propagated and integrated. As a result, they focus
on how to transform one remote operation at a time. To the
best of our knowledge, most algorithms take O(|H|2) to in-
tegrate one remote operation and hence O(|H|3) to integrate
a long sequence, where H is the local operation history.

An algorithm with time complexity O(|H|3) would be sub-
optimal on mobile devices. In mobile collaboration, a large
number of operations may accumulate during a disconnected
mode. Hence the algorithm must be able to efficiently inte-
grate long sequences of editing operations. Individual and
group productivity would be very low if it had to take min-
utes or even hours every time a user presses a button to sync
with her collaborators after an episode of disconnected work.

This paper presents a novel OT-based algorithm for sup-
porting mobile collaboration. As a major contribution, the
algorithm provides optimized handling of long sequences
and improves the time complexity to O(|H|). Our experi-
ments show that, for example, it takes 59 minutes in a re-
cent algorithm versus 1.5 seconds in this work on a mo-
bile device to integrate two sequences each of 3,000 oper-
ations. This efficiency improvement is achieved primarily
by maintaining operations in each of the involved sequences
in the order of the so-called operation effects relation [14].
As a result, the key steps in integrating any two sequences
can all be achieved in linear time. The algorithm is called
admissibility-based sequence transformation or ABST be-

1http://www.waveprotocol.org/whitepapers/operational-transform

159

cause it is based on the admissibility theory [14, 11] that
proposes alternative solutions to some well-known correct-
ness problems in previous work.

The next section analyzes related works to establish the con-
text of research. After that, we introduce the basic concepts
and notations. The next two sections will present the ABST
algorithm, which is followed by an example to illustrate how
the algorithm works. Then we discuss its complexities and
performance experiments. Finally, we summarize the con-
tributions and limitations of this work and future directions.

2. RELATED WORK
Pessimistic protocols such as locking and floor control are
counterproductive for human users because they generally
have to wait for their turns [6]. Traditional optimistic tech-
niques [17] may suffer from loss of work since only one
write can eventually “win” among concurrent writes that con-
flict, i.e., target the same object [4]. Therefore, they are usu-
ally used in applications in which concurrent updates rarely
conflict, e.g., distributed file systems [7]. Version control
systems such as SVN and GIT are asynchronous and work
at line granularity: two concurrent changes conflict if they
target the same line in a textual document.

OT is an optimistic technique motivated specifically for con-
current editing of a shared document [3]. Among the most
differentiating properties of OT, in general, two primitives,
insert and delete, are used in place of write and all updates
can be transformed to commute. This avoids losing interac-
tion results and relying on the same total order of execution
to achieve convergence. This property also makes it possible
to use OT for supporting fine-grained updates and merging.

A plethora of OT algorithms have been proposed under the
framework of [23]. Most of them are designed for real-time
group editors which assume frequent propagation and inte-
gration of operations. Under this assumption, the operation
history (H) is usually kept short enough to warrant efficiency
[23]. Hence, even though operations are usually propagated
in batches [13], they only address how to integrate one re-
mote operation at a time. In general, they keep operations
in the history H in their order of execution. Most of them
(e.g., [9, 21, 22]) adopt a similar control procedure: when
a remote operation o is integrated, they transpose the en-
tire history such that those operations that happened before
o precede those that are concurrent with o; then o is trans-
formed with those concurrent operations.

According to analyses in [10], the above transposition step
alone takes O(|H|2) time. Each time one operation in a re-
mote sequence T is integrated, it is added to H , increasing
its size by one. The time to integrate T is O(

∑|H|+|T |−1
k=|H| k2),

which is O(|H|3) when |H| and |T | are comparable. Al-
though it may not cause performance problems in real-time
group editors, the complexity would be too high on mo-
bile devices because of their limited processing power and
intermittent connectivity. The sequences could grow fast
enough to render the algorithm too slow to achieve inter-
activity. Hence there is a room for improvements.

To the best of our knowledge, except for [12, 19], no other
OT-based (e.g., [9, 21, 22, 25]) or non-OT (e.g., [5, 16])
algorithms proposed for collaborative editing systems have
addressed how to integrate and transform sequences.

Shen and Sun [19] keep operations in sequences in their ex-
ecution order. When transforming two sequences, it takes
time quadratic in the size of the two sequences. They achieve
convergence by making use of a central notification server.
Nonetheless, we acknowledge that their proposal to com-
press the operation sequences is complementary to our work
and could be leveraged in our future research.

Li and Lu [12] is also able to merge in linear time two op-
eration sequences (edit scripts that are obtained by diffing).
However, their focus is on transparent sharing of familiar
single-user editors. Hence, their algorithm is simplified such
that every time two sequences are transformed they must
be defined in the same state. This means that a user can-
not make new edits until synchronized with all other users,
which is a strong assumption in mobile environments. The
presented ABST algorithm could be used in the system of
[12] for improved flexibility in synchronization.

Admissibility-Based Transformation (ABT) [14, 11] is our
latest theoretical framework under which OT algorithms can
be formally proved. Conceptually, admissibility requires that
every operation be executed such that its effect does not con-
tradict the object order established by previous executions.
We acknowledge the existence of different understandings
of the correctness of OT algorithms, e.g., as in [23, 25]. By
our understanding [9, 15, 14, 11], however, ABT is the state-
of-the-art because it is formally proved and fully presented;
we prefer to compare the performance of ABST with ABT,
by no means implying that the other works are incorrect.

To achieve admissibility, ABT maintains history H as the
concatenation of an insertion subsequence (Hi) and a dele-
tion subsequence (Hd) with operations in execution order in
either subsequence. As a result, when a remote operation is
integrated, it is transformed with insertions before deletions,
avoiding the insertion-tie problems [9, 21, 23]. Because only
subsequence Hi is transposed, it takes O(|Hi|2 + |Hd|) to
integrate a remote operation, which outperforms other OT
algorithms with time complexity O(|H|2) or higher. Never-
theless, the time complexity of ABT is still O(|H|3) when
integrating a long sequence with size comparable to |H|.
ABST follows the same theory as ABT and hence its cor-
rectness can be formally proved [18]. The key concept in
ABT, namely, the effects relation, is leveraged in this work
to order operations by the relative position of their effects.
The main differences between ABT and ABST are that (1)
ABST propagates and integrates operations in units of trans-
actional sequences, and (2) ABST keeps the histories and
sequences ordered by the effects relation. As a result, by ex-
ploiting this ordering property, time complexities of all the
key steps in ABST can be achieved in linear time. All the
functions presented in this paper are new in ABST because
they are designed for efficient handling of sequences.

160

ac

bc

o1=ins(1,b)
o2=del(0)

o2’=del(0)
o1’=ins(1,b)

abc c

cb

o1’=ins(0,b)

bc

site 1 site 2

ac
replicate

Legends:

submit local op

sync remote op

propagate op

state of data

sync

Figure 1. With operational transformation, concurrent operations are
transformed to commute at sync time without overwriting each other.

3. BACKGROUND: CONCEPTS AND NOTATIONS
The basic idea of OT is illustrated as in Figure 1. Suppose
that a file containing string “ac” is replicated at two sites.
Site 1 performs operation o1 = ins(1, b) which inserts ‘b’ at
position 1 to change the content to “abc”. In parallel, site 2
performs o2 = del(0) to delete the object ‘a’ at position 0 to
change the content to “c”. These two operations are prop-
agated to all sites. At sync time, site 1 needs to integrate
remote operation o2 with local operation o1. By inspect-
ing their positions, o1 inserts on the right side of where o2

deletes. Hence the position of o2 is not affected and can be
executed as-is in state “abc”, which results in content “bc”.

On the other hand, at site 2, if o1 were executed as-is in
current state “c”, the wrong content “cb” would be yielded.
This is because the execution of o2 on the left of where o1

inserts has invalidated the position of o1. Hence o1 needs
to be transformed (i.e., by shifting its position) into o′1 =
ins(0,b) such that it can be correctly executed in current state
of site 2. As a result, site 2’s content becomes “bc” and the
two replicas converge despite different orders of execution.

In many traditional approaches, the same total order of oper-
ations is enforced at all sites such that the replicas converge
in the same state. Different total orders usually lead to dif-
ferent results. In Figure 1, for instance, if the total order is
that o1 precedes o2, site 2 must first undo o2 and then exe-
cute o1 and o2 in order; if the total order is o2 precedes o1,
on the other hand, site 1 must first undo o1 and then execute
o2 followed by o1. Although the former total order produces
the right result “bc”, the latter yields the wrong result “cb”
that violates the intention of o1 to insert ‘b’ before ‘c’ [23].

In general, traditional systems focus on convergence and do
not address which operation order is “right”. OT theories
require that the execution of operations preserve operation
intentions [23] or admissibility [14, 11] in addition to con-
vergence. In particular, admissibility ensures that the exe-
cution of any operation does not violate the order of objects
established by previous executions. As a result, when all op-
erations have been executed, objects are consistently ordered
at all sites and this final order is consistent with the original
object order established when the operations are generated.
In spirit, the idea of admissibility resembles that of intention
preservation, except that it is a formal condition that can be
proved. As long as the effects relation is always preserved

(i.e., admissibility) and causality preserved, data replicas in
the system eventually converge in the right state.

By the admissibility theory [14, 11], any two executed op-
erations can be unambiguously ordered by their effects rela-
tion ≺, i.e., the relative position of the objects they insert or
delete. For example, in the scenario of Figure 1, the opera-
tions can be ordered as o2 ≺ o1 because the object o2 deletes
(‘a’) appears left to the object o1 inserts (‘b’) in one of the
legal states that ever appear in the system. When tie situ-
ations arise, e.g., two concurrent insertions target the same
position, tie-breaking policies are used in the specific algo-
rithm as long as they do not cause inconsistent ordering of
objects. The resulting effects relation is deterministic.

In scenarios like the above, concurrent execution of oper-
ations easily leads to inconsistencies. Hence, when trans-
forming two operations, we need to determine their tempo-
ral relationship, e.g., whether or not they are concurrent. As
a convention [3], we use vector timestamps for determining
the happens-before (→) and concurrent (‖) relations. In the
above scenario, we have relation o1 ‖ o2.

To simplify discussions, we model the shared data as a string
and consider two primitive operations, ins(p, c) and del(p),
which insert and delete one object at position p, respectively.
For any operation o, attribute o.v is the vector timestamp;
o.id is the id of the site that originally generates it; o.type is
either ins or del; o.pos is the target position; and o.c is the
effect object being inserted or deleted.

Theoretically, an update operation that modifies an attribute
of an object could be represented as a deletion of the original
object followed by an insertion of the object with the new at-
tribute. Note that o.pos is an integer since the shared data is
modeled as a linear string. According to [2], we can denote
o.pos as a vector of integers for a tree structure, with little
impact on the algorithms. Further, according to [24], even
operations in sophisticated office and design software can be
mapped to a linear or tree-like data model. Hence our model
does not lose generality although simplified.

In addition, note that o.pos is always relative to a state of
the document. Borrowing established notations from [22], if
two operations are defined in the same state, they are said to
be contextually equivalent (�); if one is defined in the state
resulted from executing another operation, they are said to
be contextually serialized (�→). In Figure 1, for instance, we
have o1 � o2, o1 �→ o′2, and o2 �→ o′1.

An operation sequence sq = [o1, o2, ..., on] is such that all
operations in sq are contextually serialized. That is, o1 �→
o2... �→ on. The number of operations in sq is denoted as
|sq|. Notation sq[i] refers to the operation in position i of
sq, where 0 ≤ i < |sq|. For example, sq[0] = o1 and
sq[1] = o2. If two sequences sq1 and sq2 are contextual
serialized, denoted as sq1 �→ sq2, we can concatenate them
into a new sequence sq = sq1 · sq2. Generalizing notations
�→ and ·, for an operation o and a sequence sq, if sq �→ o,
we can append o to sq obtaining a new sequence sq′ = sq · o.

161

4. SEQUENCE TRANSFORMATION ALGORITHM
A history buffer H is maintained at each site which records
all operations that have been executed at that site, includ-
ing local and remote operations. ABST propagates and inte-
grates a sequence of operations at a time as if it is a “transac-
tion”. In the sequences and the history, insertions and dele-
tions are kept in separate subsequences to achieve correct-
ness, and each subsequence is ordered by the effects rela-
tion to achieve efficiency. The time complexity is as low as
O(|H|) although the algorithm may look complicated.

In this section, we first introduce the concept of “transac-
tional sequence”; then we give the control algorithm for inte-
grating a remote transactional sequence; after that, we elabo-
rate the functions that are called in the integration algorithm.
In the next section, we will present how to obtain a local
transactional sequence before it is propagated.

4.1. Transactional Sequence
From the user’s perspective, a sequence T can be consid-
ered as a “transaction”. We call it a transactional sequence,
which conceptually has two aspects: On one hand, the user
performs a batch of editing operations locally first and then
propagates them to remote sites when she feels “ready” for
sharing. During a local transaction, no remote operation is
integrated so as not to distract the user from her own work.
This way, a sequence T of operations is accumulated and
propagated in its entirety to remote sites. On the other hand,
at sync time, a number of sequences could have been re-
ceived from remote sites. Those sequences are kept in a re-
ceiving queue, RQ. When the user feels “ready” for merg-
ing, each time a sequence T from RQ is integrated into H
after transformation. The transformed sequence T ′ is then
applied to the local data replica in its entirety.

A transactional sequence has the following properties: All
operations in a given transactional sequence T have the same
site id; their vector timestamps are equivalent in all corre-
sponding elements except for the one representing that site.
Hence we can use T.id for the site id, and T.type for the type
if all operations in T are of the same type. It can be shown
that, for any operation o that is not in T , if o is concurrent
with any T [i], then o must be concurrent with any other T [j],
where 0 ≤ i, j < |T |. Similarly, for any operation o′ that
is not in T , if it happens before any T [i], it must also hap-
pen before any other T [j]. For convenience, we denote the
relations as o ‖ T and o′ → T , respectively.

4.2. Integrate One Remote Sequence
We maintain the history H at each site as Hi · Hd, where
Hi is a sequence of all insertions and Hd is a sequence of
all deletions in H . Furthermore, operations in each of these
two subsequences are ordered by the effects relation≺. Sim-
ilarly, a transactional sequence T is maintained as Ti · Td,
where Ti and Td are sequences of insertions and deletions
that are ordered by the effects relation, respectively. History
H is initially empty and grown incrementally as local and
remote transactions are integrated. Sequences H and T are
so ordered for correctness and efficiency reasons.

Algorithm 1 Integrate(T, H): (T ′,H ′)

1: csqi ← getConcurrentSQ(Ti,Hi)
2: T ′′

i ← ITSQ(Ti, csqi)
3: T ′

i ← ITSQ(T ′′
i ,Hd)

4: H ′
i ← mergeSQ(Hi, T

′′
i)

5: H ′′
d ← ITSQ(Hd, T

′′
i)

6: csqd ← getConcurrentSQ(Td,H
′
i)

7: T ′′
d ← ITSQ(Td, csqd)

8: T ′
d ← ITSQ(T ′′

d ,H ′′
d)

9: H ′
d ← mergeSQ(H ′′

d , T ′
d)

10: return (T ′
i · T ′

d, H ′
i ·H ′

d)

Let Hk be site k’s history. When a sequence T is generated
at site x, Hx → T must hold. When T is integrated at site
y, it must be causally-ready at site y, i.e., all operations that
happen before T have been executed at site y and included
in Hy . Before T = Ti · Td is propagated at site x, it must
have been transformed with Hx such that Hx

i �→ T �→ Hx
d .

That is, T does not include the effects of any deletions that
happen before T .

Algorithm 1 shows how a remote sequence T is integrated
with local history H . In the output, T ′ is the result of trans-
forming T with H; H ′ already includes all operations in T ;
and the same ordering properties are maintained in H ′ and
T ′. After function Integrate returns, the resulting T ′ is ready
to be executed in the current state of the local data replica.

The essential idea of integrating a remote operation o, is to
incorporate the effects of operations that have been executed
locally (already in H) but not yet included in o. The execu-
tion of those operations has led to current state of the data but
may have invalidated the position of o relative to the current
state. The process of incorporating effects of one operation
into another is called inclusion transformation or IT [23].

The same idea applies when integrating a remote sequence
T . When Algorithm 1 is called, T is causally ready, i.e., any
operation in H must either happen before T or be concurrent
with T . In addition, T has excluded the effects of all dele-
tions that happen before T in its originating site. We know
that H is maintained as Hi ·Hd, or an insertion sequence Hi

concatenated by a deletion sequence Hd. Hence T includes
effects of some of the operations in Hi (that happened before
T) but none of the operations in Hd. By the spirit of OT, we
need to incorporate the effects of all insert operations in Hi

that are concurrent with T and all delete operations in Hd.

Accordingly, Algorithm 1 consists of two parts: lines 1-5 in-
tegrates Ti and lines 6-9 integrates Td. We explain these two
parts as follows: First, to integrate Ti, we need to extract all
operations in Hi that are concurrent with Ti, resulting in se-
quence csqi. This is achieved by function getConcurrentSQ.
Next, we call function ITSQ to incorporate the effects of
csqi into Ti, resulting in T ′′

i . Then, we incorporate the ef-
fects of Hd into T ′′

i , yielding T ′
i . After that, we call function

mergeSQ to merge T ′′
i into Hi, yielding H ′

i . Now all inser-
tions in T are integrated into H .

162

Algorithm 2 getConcurrentSQ(T, isq) : csq

1: csq ← []
2: for (j ← 0; j < |isq|; j + +) do
3: if (isq[j] ‖ T) then
4: csq = csq · isq[j]
5: end if
6: end for
7: return csq

Note, however, that the last step to merge T ′′
i into Hi inval-

idates the definition state of Hd. This is because Hd is de-
fined in the state obtained by executing Hi, i.e., Hi �→ Hd.
After the merging, property H ′

i �→ Hd no longer holds due
to the effects of T ′′

i . Hence we need to transform Hd by call-
ing function ITSQ to incorporate the effects of T ′′

i , yielding
H ′′

d . Now H ′
i �→ H ′′

d holds.

Second, to integrate Td, we first extract all operations in H ′
i

that are concurrent with Td, resulting in csqd. Note that csqd

and csqi have exactly the same set of operations. However,
as a result of merging Ti in step 4, operations in csqd already
include the effects of Ti and hence the two sequences, Td and
csqd, are relative to the same definition state, that is, Td �
csqd. Now calling function ITSQ we first incorporate effects
of csqd into Td, yielding T ′′

d , and then incorporate effects of
H ′′

d into T ′′
d , yielding T ′

d. After that, we call mergeSQ to
merge T ′

d into H ′′
d , yielding H ′

d.

When Algorithm 1 returns, we have fulfilled the first goal
of transforming T with H such that T ′ = T ′

i · T ′
d can be

executed in current state, and the second goal of merging
T such that H is updated to H ′ = H ′

i · H ′
d. In the rest

of this section, we will explain the three functions, namely,
getConcurrentSQ, ITSQ, and mergeSQ.

4.3. Extract Concurrent Subsequence
Algorithm 2 extracts all operations that are concurrent with
sequence T from sequence isq. Input T is a transactional
sequence and input isq is an insertion sequence that is or-
dered by the effects relation. The output csq is a sequence in
which all operations are concurrent with T and ordered by
the effects relation.

Any operation in the input sequence isq either happens be-
fore T or is concurrent with T . As an example, let isq be
[h1, c1, h2, c2, h3], where h1, h2, h3 happen before T and
c1, c2 are concurrent with T . Conceptually, we have to trans-
pose these operations such that the result isq′ = [h′

1, h′
2, h′

3,
c′1, c′2]. That is, [h′

1, h
′
2, h

′
3] �→ [c′1, c

′
2], meaning that all

those that happen before T are contextually serialized be-
fore all those that are concurrent with T . To achieve so, we
need to “swap” every hi with every cj on its left. As has been
well understood [21, 22], a transposition function could be
devised as follows: let csq hold the partial results; scan isq
from left to right, for every isq[j], if isq[j] ‖ T , append it
to csq; or if isq[j]→ T , swap it with every operation in csq
right to left. The time complexity is O(|isq|2).

Algorithm 3 ITSQii(sq1, sq2) : sq′1

1: i← 0; j ← 0; sq′1 ← sq1

2: while (i < |sq2|) and (j < |sq1|) do
3: ipos← sq2[i].pos− i
4: jpos← sq1[j].pos− j
5: if ipos < jpos then
6: i← i + 1
7: else if (ipos=jpos) and (sq2[i].id < sq1[j].id) then
8: i← i + 1
9: else

10: sq′1[j].pos← sq′1[j].pos + i
11: j ← j + 1
12: end if
13: end while
14: for (; j < |sq1|; j++) do
15: sq′1[j].pos← sq′1[j].pos + i
16: end for
17: return sq′1

However, this process can be greatly simplified if we con-
sider that all operations in the input isq are insertions and
ordered by the effects relation. By this property, for any oi =
isq[i], we have the effects relation oi ≺ oi+1, where 0 ≤ i <
i + 1 < |isq|. Swapping oi and oi+1 means that, in an al-
ternative execution order, oi+1 is executed before oi. Swap-
ping execution order of two operations should not change
the effects relation. For example, consider state “abc”. Af-
ter executing sequence [ins(1,x), ins(3,y)], the state becomes
“axbyc”. Transposing these two operations results in se-
quence [ins(2,y), ins(1,x)], which applied on “abc” yields
the same state “axbyc”. More generally, let [o′i+1, o

′
i] be the

result of swapping [oi, oi+1]. The relation between their po-
sitions must be o′i.pos = oi.pos and o′i+1.pos = oi+1.pos− 1.
That is, the swapping changes oi+1.pos but not oi.pos.

This property leads to the following simplification of algo-
rithm: each time an operation isq[j] → T is swapped with
the partial result csq, the swapping does not affect the posi-
tions of operations in csq. Also note that we do not really
need those operations in isq that happen before T . There-
fore, we just need to directly pick up those in isq that are
concurrent with T . This is exactly how Algorithm 2 is de-
signed. Obviously its time complexity is O(|isq|).

4.4. Transform Two Sequences
Function ITSQ(sq1, sq2) inclusively transforms sequence sq1

with sq2, i.e., to incorporate the effects of sq2 into sq1. The
precondition is sq1 � sq2, meaning that the two input se-
quences are defined in the same state. The postcondition is
sq2 �→ sq′1, meaning that the output sequence sq′1 is as if it
were to be executed after sq2.

By operation types of the two input sequences, we can define
four ITSQ functions. Here we only define function ITSQii
for transforming two insertion sequences, as in Algorithm 3.
The other three functions, ITSQid, ITSQdi, and ITSQdd, can
be defined similarly. In principle, we need to transform every

163

Algorithm 4 mergeISQ(sq1, sq2): sq

1: sq ← []; i← 0; j ← 0
2: while (i < |sq2|) and (j < |sq1|) do
3: if (sq2[i].pos− i ≤ sq1[j].pos) then
4: sq ← sq · sq2[i]
5: i← i + 1
6: else
7: sq1[j].pos← sq1[j].pos + i
8: sq ← sq · sq1[j]
9: j ← j + 1

10: end if
11: end while
12: for (; i < |sq2|; i++) do
13: sq ← sq · sq2[i]
14: end for
15: for (; j < |sq1|; j++) do
16: sq1[j].pos← sq1[j].pos + i
17: sq ← sq · sq1[j]
18: end for
19: return sq

sq1[j] with every sq2[i]. However, some of the transforma-
tions can be saved due to their special ordering.

For any two given operations sq1[j] and sq2[i], we can di-
rectly transform sq1[j] with sq2[i] only when they are de-
fined in the same state and their positions can be compared.
Consider that these two sequences are defined in the same
state and that operations in these two sequence are contextu-
ally serialized. To bring sq1[j] and sq2[i] to the same state,
we only need to swap sq1[j] to the front of sq1 and also swap
sq2[i] to the front of sq2. By how the operations are ordered
in sq1, we know that all operations ordered on the left of
sq1[j] have effect objects that precede the effect object of
sq1[j]. So the swapping results in operation sq1[j]′ such that
sq1[j]′.pos = sq1[j].pos - j to account for the j objects on its
left. For the same reason swapping sq2[i] results in operation
sq2[i]′ such that sq2[i]′.pos = sq2[i].pos − i.

Let ipos = sq2[i]′.pos and jpos = sq1[j]′.pos. With every
sq1[j], as in lines 5-8, we fix cursor j on sq1 and move cursor
i on sq2 until we have identified all operations in sq2 whose
effect objects precede that of sq1[j]. Then, as in line 10, we
shift sq1[j].pos to account for those i operations. There are
two cases in which sq2[i] ≺ sq1[j]: (1) ipos < jpos, since
now they are defined in the same state and can be compared;
and (2) ipos = jpos and sq2[i].id < sq1[j].id, meaning there
is a tie and we break the tie by comparing their site ids. It is
worth noting that the tie cannot always be broken this way.
The correctness conditions are discussed in [14, 11].

4.5. Merge Two Sequences
Function mergeSQ(sq1, sq2) merges sequences sq1 and sq2

into a new sequence sq. The two input sequences are ordered
by the effects relation and sq1 �→ sq2. The output sequence
sq is effect-equivalent with sq1 ·sq2. That is, if sq1 is defined
in state s and the state becomes s′ after execution of sq1 ·sq2,

then the execution of sq in s also yields s′. Here we only
specify function mergeISQ as in Algorithm 4, which merges
two insertion sequences. The mergeDSQ function for merg-
ing two deletion sequences can be specified similarly.

The structure of Algorithm 4 is similar to that of the classic
2-way merge algorithm, since the two input sequences are
ordered. However, some transformation is required so as to
make comparisons between any two given operations sq1[j]
and sq2[i]. This is achieved as follows: First, we swap sq1[j]
to the end of sq1. In this process, sq1[j].pos remains as-is.
Second, we swap sq2[i] to the front of sq2. In this process,
sq2[i].pos is shifted to account for the i operations on its
left, resulting in sq2[i]′.pos = sq2[i].pos - i. The reasons are
similar to those for getConcurrentSQ and ITSQ.

After the above transformation, sq1[j] �→ sq2[i]′, the two in-
sertions are defined in two adjacent states, respectively, and
we can compare their positions. Because they are insertions
that are executed in tandem, if sq2[i]′.pos ≤ sq1[j].pos, the
effect object of sq2[i]′ should precede that of sq1[j]. Hence,
in the resulting sequence, sq2[i] should precede sq1[j]. On
the other hand, if sq2[i]′.pos > sq1[j].pos, the effect object of
sq2[i]′ should go after that of sq1[j] and hence sq2[i] should
be ordered after sq1[j] in the resulting sequence. However,
to account for the i operations in sq2 that have been placed
on its left, we need to adjust sq1[j].pos by i, as in line 7.

5. OBTAINING TRANSACTIONAL SEQUENCES
Remote transactions are not integrated until the current local
transaction is submitted. In this section, we present the end-
Transaction algorithm for submitting a local transaction and
the swapSQ algorithm for swapping two sequences. Some
work could be done at the UI level (e.g., as in [12]) to help
the user make informed decisions as to when to submit the
local transaction and integrate remote transactions.

We record local operations in buffer T that is maintained as
Ti · Td. Every time a new local operation o is performed,
property (Ti · Td) �→ o must hold; If o.type = del, we swap
o with operations in Td right to left until it can be added in
the right position in Td; if o.type = ins, we first swap o with
Td and then with Ti right to left until it can be added in the
right position of Ti. When a transaction is ended, function
endTransaction(T, H) is invoked to integrate T into the local
history H and meanwhile transform T with H . After that,
the resulting sequence T ′ is propagated to remote sites.

5.1. Submit a Local Transaction

Algorithm 5 endTransaction(T, H): (T ′,H ′)

1: (T ′
i ,H

′′
d)← swapSQdi(Hd, Ti)

2: (T ′
d,H

′′′
d)← swapSQdd(H ′′

d , Td)
3: H ′

i ← mergeISQ(Hi, T
′
i)

4: H ′
d ← mergeDSQ(H ′′

d , Td)
5: return (T ′

i · T ′
d, H ′

i ·H ′
d)

Function endTransaction is specified in Algorithm 5. The
two input sequences are T = Ti ·Td and H = Hi ·Hd, each

164

Algorithm 6 swapSQdi(sq2, sq1) : (sq′1, sq
′
2)

1: i← 0; j ← 0; sq′1 ← sq1; sq′2 ← sq2

2: while (i < |sq2|) and (j < |sq1|) do
3: if (sq2[i].pos < sq1[j].pos− j) then
4: sq′2[i].pos← sq′2[i].pos + j
5: i← i + 1
6: else
7: sq′1[j].pos← sq′1[j].pos + i
8: j ← j + 1
9: end if

10: end while
11: for (; j < |sq1|; j++) do
12: sq′1[j].pos← sq′1[j].pos + i
13: end for
14: for (; i < |sq2|; i++) do
15: sq′2[i].pos← sq′2[i].pos + j
16: end for
17: return (sq′1, sq

′
2)

of the four subsequences being ordered by the effects rela-
tion. Since no new remote transaction has been integrated
before this function is called, the history H does not include
operations concurrent with T . The precondition is H �→ T .
When the function returns, T is merged into H ′, T ′ = T ′

i ·T ′
d

and H ′ = H ′
i ·H ′

d. The postconditions are that H ′ is effect-
equivalent with (H · T) and that the effects of Hd are ex-
cluded from T ′. Note that the latter satisfies the precondition
of Algorithm 1. The resulting T ′ is ready for propagation.

In Algorithm 5, we first swap Hd and Ti to obtain T ′
i and

H ′′
d . Since Hi �→ Hd �→ Ti �→ Td, we have Hi �→ T ′

i �→
H ′′

d �→ Td. Then we swap H ′′
d with Td to obtain T ′

d and H ′′′
d ,

by which we have Hi �→ T ′
i �→ T ′

d �→ H ′′′
d . Now we have

achieved the first goal to obtain T ′ = T ′
i · T ′

d in which the
effects of all deletions that happen before T are excluded.
Next, we merge T ′

i into Hi, yielding H ′
i , and merge Td into

H ′′
d , yielding H ′

d. As discussed in Section , the preconditions
of these two merging steps are Hi �→ T ′

i and H ′′
d �→ Td,

respectively, which are satisfied. As a result, we fulfill the
second goal to merge T into H .

5.2. Swap Two Sequences
Now we specify the two swap functions called in Algorithm 5.
Here we only give function swapSQdi for swapping a dele-
tion sequence and an insertion sequence. Function swap-
SQdd for swapping two deletion sequences can be defined
similarly. As in Algorithm 6, function swapSQdi(sq2, sq1)
swaps the execution order of the two input sequences. The
precondition is sq2 �→ sq1, where operations in each se-
quence are of the same type and ordered by the effects rela-
tion. The postcondition is sq′1 �→ sq′2.

Conceptually, we would have to swap every sq1[j] with the
entire sq2 right to left. However, this can be simplified be-
cause the two sequences are ordered by the effects relation.
For any given sq1[j] and sq2[i], we do the following two
steps: First, swap sq2[i] to the end of sq2. Because its ef-

fect object precedes those of the operations on its right, its
position remains as-is, i.e., sq2[i]′.pos = sq2[i].pos. Second,
swap sq1[j] to the front of sq1. Because its effect object fol-
lows those of the operations on its left, its position must be
shifted by j to account for those j operations, i.e., sq1[j]′.pos
= sq1[j].pos - j. As a result, sq2[i]′ �→ sq1[j]′ and their po-
sitions can be compared.

Now we swap these two operations. Let oi = sq2[i]′ and oj =
sq1[j]′. The conditions are oi.type = del, oj .type = ins, and
oi �→ oj . We need to consider three cases:

1. If oi.pos < oj .pos, it means that after oi.c is deleted, oj .c
is inserted on the right side of position oi.pos. That is,
oi ≺ oj . Hence, if oj is executed earlier, the position of oj

should be shifted because oi.c is not deleted yet, whereas
oi.pos should remain as-is because the earlier execution
of oj on the right does not change the position of oi.c.

2. If oi.pos > oj .pos, it means oj ≺ oi. Hence, if oj is ex-
ecuted earlier, oj .pos should remain because the deferred
execution of oi has no impact, whereas oi.pos should be
shifted because oj .c has been inserted on the left of oi.c.

3. If oi.pos = oj .pos, it means that, after oi.c is deleted, oj .c
is inserted at the same position. Since oi → oj , according
to proofs in [14], we can safely mandate a tie-breaking
policy such that the inserted object precedes the deleted
object, that is, oj ≺ oi. As a result, if we swap the execu-
tion order and oj is executed earlier, oj .pos should remain
as-is whereas oi.pos is shifted.

Therefore, in Algorithm 6, the condition in line 3 corre-
sponds to case (1), oi ≺ oj , by which oj .pos should be
shifted; the condition in line 6 corresponds to cases (2) and
(3), oj ≺ oi, by which oi.pos should be shifted.

We explain the loop in lines 2-10 as follows: On one hand, in
lines 6-8, for a given oi in sq2, scan sq1 left to right until all
operations that precede oi in the effects relation are found;
for each oj : oj ≺ oi, we do not need to shift oj .pos with
regard to oi, however, we need to account for the i opera-
tions in sq2 that have already been in place in sq′2 and whose
effects precede oj ; hence we still need to shift oj .pos by i
positions (as in line 7). On the other hand, similarly in lines
3-5, for a given oj in sq1, scan sq2 left to right until all op-
erations that precede oj in the effects relation are found and,
for each oi such that oi ≺ oj , shift oi.pos by j to account for
those j operations that have already been in place (line 4).

6. AN EXAMPLE
Consider a scenario in which two users, Alice and Bob, are
coauthoring a document. Suppose that the initial state is a
string “abcd”. As shown in Figure 2, Alice submitted one
transaction T1 and Bob submitted two transactions T2 and
T3. We study how the sequences are processed.

6.1. Processing Local Transactional Sequences
Site A: Alice changes the document from “abcd” to “pabq”
by performing a sequence of operations: [ins(0, p), del(4),

165

abcd

T1
T2

T2’

T1’

pabq
Legends:

submit local seq

sync remote seq

propagate seq

state of data

Alice Bob

abcd

xd

yzd

pxq

pyzq

pyzq
T3’

T3

Figure 2. Alice submitted sequence T1 and Bob submitted two se-
quences T2 and T3.

del(3), ins(3, q)]. Meanwhile, they are reordered into a trans-
actional sequence T1 = [ins(0, p), ins(3, q), del(4), del(4)].
When T1 is submitted, the local history is empty. Hence, HA

= T1 and T1 is propagated as-is.

Site B: Bob first changes “abcd” into “xd” by performing
[del(1), del(1), ins(1, x), del(0)]. It is reordered into a trans-
actional sequence T2 = [ins(1, x), del(0), del(1), del(1)].
When T2 is submitted, the local history is empty. Hence, we
get HB = T2 and propagate T2 as-is.

Later, Bob changes “xd” into “yzd” by performing opera-
tions [ins(1, z), del(0), ins(0, y)]. They are reordered into a
transactional sequence T3 = [ins(0, y), ins(2, z), del(1)].

Then Algorithm 5 is called to integrate T3 into local history
HB and produce a transformed transactional sequence that
is to be propagated to site A. The effects of deletions in the
local history are excluded from T3 and T3 is merged into the
history. The resulting T3 and HB = HB

i ·HB
d are as follows:

T3 = [ins(0, y), ins(3, z), del(2)]
HB

i = [ins(0, y), ins(2, x), ins(3, z)]
HB

d = [del(1), del(1), del(2), del(2)]

6.2. Processing Remote Transactional Sequences
Site A: Algorithm 1 is called to integrate T2, which trans-
forms it into an executable form T ′

2 and merges it with HA

yielding HA′
= HA′

i ·HA′
d , as follows.

T ′
2 = [ins(2, x), del(1), del(2)]

HA′
i = [ins(0, p), ins(2, x), ins(4, q)]

HA′
d = [del(1), del(2), del(3), del(3)]

After executing T ′
2 on Alice’s document, it becomes “pxq”.

Later, when T3 is integrated, the results T ′
3 and HA′′

=
HA′′

i ·HA′′
d are as follows:

T ′
3 = [ins(1, y), ins(3, z), del(2)]

HA′′
i = [ins(0, p), ins(1, y), ins(3, x), ins(4, z), ins(6, q)]

HA′′
d = [del(2), del(2), del(3), del(4), del(4)]

Executing T ′
3 on Alice’s document yields “pyzq”.

Site B: When T1 is integrated, the results T ′
1 and history

HB′
= HB′

i ·HB′
d are as follows:

T ′
1 = [ins(0, p), ins(3, q), del(4)]

HB′
i = [ins(0, p), ins(1, y), ins(3, x), ins(4, z), ins(6, q)]

HB′
d = [del(2), del(2), del(3), del(4), del(4)]

Executing T ′
1 changes Bob’s document to “pyzq”, which is

identical with the final state of Alice.

7. COMPLEXITIES AND PERFORMANCE
The space complexity of the presented ABST algorithm is
trivially O(|H| + |T |). From the algorithm specs and ex-
planations, it is easy to see that all the functions, getCon-
currentSQ, ITSQ, mergeSQ, and swapSQ each only need to
scan their input sequences exactly once. Hence they all have
time complexity linear in the size of input. Consequently,
the time complexity of integrating either a local transaction
or a remote transaction is O(|H|+ |T |). Note that there is no
extra step for sorting the sequences because they are always
maintained in the effects relation order.

As surveyed earlier, most existing OT algorithms are de-
signed to integrate remote operations one by one. In general,
they need to transpose the entire history H , which implies
O(|H|2) to integrate one remote operation and O(|H|3) to
integrate a long remote sequence T . Although the time com-
plexity of ABT is in the same order of magnitude, it is faster
by some factor because it only needs to transpose Hi which
is a subsequence of H . Therefore, using ABT as the base-
line in our experiments does not lose generality with regard
to other algorithms, e.g., [9, 15, 16, 21, 22].

To obtain a more concrete sense of what the performance
implications are in real applications, we implemented ABT
and ABST and conducted experiments on a Nokia N810 In-
ternet tablet. The tablet has a 400 MHz ARM v61 CPU
(TI OMAP 2420) and 128 MB DDR RAM running Maemo
Linux with kernel 2.6.21-omap1. The algorithms are pro-
grammed in C# and compiled using Maemo Mono C#. Ad-
ditionally, the tablet has a built-in slideout keyboard and can
be connected to a bluetooth keyboard and an external dis-
play, which makes a reasonable mobile computer.

The experiments are designed to study how long it takes
to execute Integrate(T, H). In the experiments, we gener-
ate two sequences, H and T , such that H ‖ T , and call
Integrate(T, H) in ABT and ABST, respectively. For every
generated T and H , Integrate(T, H) is executed five times
and the average time is recorded. For the purposes of this
paper, it would suffice to use simulated workloads.

The positions of operations in each sequence are uniformly
distributed over the same initial document. In ABT and
ABST, operation positions have little impact on the inte-
gration time since they do not incur extra costs in breaking
insertion ties as in some of the early algorithms [10]. The
sizes of the two sequences are varied from 0 to 3,000 with
step 300. The percentage of insertions in each sequence is
80% and accordingly the deletion ratio is 20%. The ratio
is reasonable for typical editing tasks in which the content
increases faster than it decreases. As the insertion ratio de-
creases, the execution time becomes shorter by some small
factor in ABT but it remains almost the same in ABST.

166

 0

 500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

 300 600 900 1200 1500 1800 2100 2400 2700 3000

T
im

e
(m

s)

ABT: length of H

Length of T
300
600
900

1200
1500
1800
2100
2400
2700
3000

 0

 200

 400

 600

 800

1000

1200

1400

1600

1800

 300 600 900 1200 1500 1800 2100 2400 2700 3000

T
im

e
(m

s)

ABST: length of H

Length of T
300
600
900

1200
1500
1800
2100
2400
2700
3000

Figure 3. Execution time of integrating two sequences on an Nokia N810 tablet using (left) ABT and (right) ABST.

The experimental results are shown in Figure 3. The data
clearly shows that ABST is faster than ABT by several or-
ders of magnitude. For example, when |T |=3,000, |H|=3,000,
and the insertion ratio is 80%, it takes 3,563,556 ms or over
59 minutes in ABT versus 1,452 ms or less than 1.5 seconds
in ABST to integrate T with H . The number of 3,000 is not
excessive for asynchronous work. For example, if a user per-
forms 20 operations per minute on average, it will take her
about 2.5 hours to generate 3,000 operations. Despite spe-
cific numbers, our data clearly indicates that ABST is much
faster and more suitable for mobile collaboration.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1000

 300 600 900 1200 1500 1800 2100 2400 2700 3000

T
im

e
(m

s)

ABST: length of H

Length of T
300
600
900

1200
1500
1800
2100
2400
2700
3000

Figure 4. Execution time of endTransaction(T, H) on the N810 tablet.

Further, we measured the time to add a new local operation o
to the transaction buffer T and the time to integrate a submit-
ted T with the local history H . Our data shows that the time
to add o is negligible: It takes less than 4 milliseconds even
when T has as many as 5,000 operations, which means that
local responsiveness is not an issue when a user performs
local operations. The measured execution times of function
endTransaction(T, H) under different values of |T | and |H|
are plotted as in Figure 4. Not surprisingly, the time to inte-
grate a local transaction is shorter than the time to integrate
a remote transaction by some constant factor.

Integrating local and remote transactions is a rare event, which
occurs only when a user is “ready” to sync. Regardless
of how sync is initiated, explicitly or implicitly, the user is
prepared to expect some delays in a mobile environment.
Hence, even though it may take 1-2 seconds when the se-
quences are long, it will unlikely cause problems [20].

8. CONCLUSIONS
This paper presents ABST, a novel transformation-based con-
sistency control algorithm for integrating sequences of up-
dates to a shared document. Theoretically, it improves time
complexity of the state-of-the-art from O(|H|3) to O(|H|),
where H is the operation history. Practically, it can take
minutes to hours in previous work versus milliseconds to
seconds in this work to integrate a long sequence on mo-
bile devices. As shown in this paper, providing optimized
sequence transformation is key to applying OT for mobile
collaboration. The improvement is critical because mobile
devices are resource-constrained and a user can easily accu-
mulate a large number of operations in a disconnected mode.

For space reasons, we will report the following progress in
separate publications. First, ABST is also efficient for real-
time collaboration. Intuitively, an algorithm optimized for
long sequences works for shorter sequences as well. Sec-
ondly, we have built several applications, for distributed ver-
sion management and group editing, based on ABST with
extended support for string operations. Thirdly, correctness
proofs [18] and details such as history garbage collection are
also left out. Due to the linear time/space complexities in our
work, garbage collection is no longer as pressing an issue as
in previous work with higher complexities.

Although this work enables a class of mobile applications
that are not well-addressed in previous work, it is more of an
enabling technology than a complete CSCW solution. Com-
plementary directions include leveraging familiar single-user
interfaces (e.g., [12, 24]), helping users make sense of the
merged content, and providing selective undo and conflict
resolution mechanisms (e.g., [25]). We will extend this work
to address related UI and usability issues.

167

ACKNOWLEDGMENTS
The authors thank the expert referees for their insightful and
constructive reviews. The work is supported in part by the
National Natural Science Foundation of China (NSFC) un-
der Grant No. 60736020 and No. 60803118, the National
Grand Fundamental Research 973 Program of China under
Grant No. 2005CB321905, the Shanghai Science & Tech-
nology Committee Key Fundamental Research Project un-
der Grant No. 08JC1402700 and the Shanghai Leading Aca-
demic Discipline Project under Grant No. B114.

REFERENCES
1. P. Bellini, P. Nesi, and M. B. Spinu. Cooperative visual

manipulation of music notation. ACM Transactions on
Computer-Human Interaction, 9(3):194–237, 2002.

2. Aguido Horatio Davis, Chengzheng Sun, and Junwei
Lu. Generalizing operational transformation to the
standard general markup language. In ACM CSCW’02,
pages 58–67, November 2002.

3. Clarence A. Ellis and S. J. Gibbs. Concurrency control
in groupware systems. In ACM SIGMOD’89, pages
399–407, 1989.

4. Saul Greenberg and David Marwood. Real-time
groupware as a distributed system: Concurrency
control and its effect on the interface. In ACM
CSCW’94, pages 207–217, October 1994.

5. Ning Gu, Jiangming Yang, and Qiwei Zhang.
Consistency maintenance based on the mark & retrace
technique in groupware systems. In ACM GROUP’05,
pages 264–273, November 2005.

6. Charles M. Hymes and Gary M. Olson. Unblocking
brainstorming through the use of simple group editor.
In ACM CSCW’92, pages 99–106, November 1992.

7. J. Kistler and M. Satyanarayanan. Disconnected
operation in the coda file system. ACM Transactions on
Computer Systems, 10(1):3–25, February 1992.

8. Du Li and Manish Anand. MaJaB: Improving resource
management for web-based applications on mobile
devices. In ACM MobiSys’09, pages 95–108, June
2009.

9. Du Li and Rui Li. Preserving operation effects relation
in group editors. In ACM CSCW’04, pages 457–466,
November 2004.

10. Du Li and Rui Li. A performance study of group
editing algorithms. In IEEE ICPADS’06, pages
300–307, July 2006.

11. Du Li and Rui Li. An admissibility-based operational
transformation framework for collaborative editing
systems. Computer Supported Cooperative Work: The
Journal of Collaborative Computing (JCSCW), August
2009. Accepted.

12. Du Li and Jiajun Lu. A lightweight approach to sharing
heterogeneous single-user editors. In ACM CSCW’06,
pages 139–148, November 2006.

13. Du Li, Chengzheng Sun, Limin Zhou, and Richard R.
Muntz. Operation propagation in real-time group
editors. IEEE Multimedia Special Issue on Computer
Supported Cooperative Work, 7(4):55–61, 2000.

14. Rui Li and Du Li. Commutativity-based concurrency
control in groupware. In IEEE CollaborateCom’05,
San Jose, CA, December 2005.

15. Rui Li and Du Li. A new operational transformation
framework for real-time group editors. IEEE
Transactions on Parallel and Distributed Systems
(TPDS), 18(3):307–319, March 2007.

16. Gérald Oster, Pascal Urso, Pascal Molli, and
Abdessamad Imine. Data consistency for P2P
collaborative editing. In ACM CSCW’06, pages
259–268, November 2006.

17. Yasushi Saito and Marc Shapiro. Optimistic replication.
ACM Computing Survey, 37(1):42–81, March 2005.

18. Bin Shao, Du Li, and Ning Gu. A fast operational
transformation algorithm for mobile and asynchronous
collaboration. IEEE Transactions on Parallel and
Distributed Systems (TPDS), September 2009.
Accepted.

19. Haifeng Shen and Chengzheng Sun. Flexible merging
for asynchronous collaborative systems. In CoopIS’02,
pages 304–321, October 2002.

20. Ben Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley, third edition, 1998.

21. Maher Suleiman, Michèle Cart, and Jean Ferrié.
Concurrent operations in a distributed and mobile
collaborative environment. In IEEE ICDE’98, pages
36–45, February 1998.

22. Chengzheng Sun and Clarence Ellis. Operational
transformation in real-time group editors: issues,
algorithms, and achievements. In ACM CSCW’98,
pages 59–68, December 1998.

23. Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun
Yang, and David Chen. Achieving convergence,
causality-preservation, and intention-preservation in
real-time cooperative editing systems. ACM
Transactions on Computer-Human Interaction,
5(1):63–108, March 1998.

24. Chengzheng Sun, Steven Xia, David Sun, David Chen,
Haifeng Shen, and Wentong Cai. Transparent
adaptation of single-user applications for multi-user
real-time collaboration. ACM Transactions on
Computer-Human Interaction, 13(4):531–582,
December 2006.

25. David Sun and Chengzheng Sun. Context-based
operational transformation in distributed collaborative
editing systems. IEEE Transactions on Parallel and
Distributed Systems, 20(10):1454–1470, 2009.

168

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

