
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 19,2010 at 02:57:11 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 19,2010 at 02:57:11 UTC from IEEE Xplore. Restrictions apply.

may define a composite operation with two sub-operations
delete(O,'a') and delete(2, 'c'). Note that positions of all
operations in o.sol are defined relative to the same state,
dst(0). That is, they are contextually equivalent with regard
to dst(o). Hence, to achieve the same effects as 0, they must
be applied simultaneously to dst(o). It would be wrong to
apply them one after another like a sequence.

As will be shown in Sections 4.5 and 4.6, when a deletion
is transformed with another insert or delete operation, the
result could be a composite deletion with two or more sub
operations. Hence, the (delete) operations being propagated
or received could be composite operations.

Algorithm 3 specifies the function for executing (atomic
and composite) operations. In particular, to execute a com
posite operation 0, we need to do a special transforma
tion to o.sol before applying the sub-operations in o.sol in
tandem. Algorithm 4 specifies this special transformation,
called selfl'I',which only adjusts positions of sub-operations
that belong to the same composite operation o. Assume that
an atomic operation's sub-operation list only includes it
self. The algorithm first initializes sol with the given o.sol;
then for every sub-operation sol [i], subtract the total length
of substrings deleted by preceding operations ranging from
sol[O] to sol[i-l]. As a result, every sol[i] has accounted for
the effects of preceding operations in the list. Then, opera
tions in the resulting sol list (actually now a sequence) can
be executed one by one in dst(o).

Algorithm 3 execute(o)

1: sol f- selfIT(0)
2: for (i=O; i < Isoll; i++) do
3: apply sol[i] in shared data
4: end for

Algorithm 4 selftT(o): sol

1: sol f- o.sol
2: if o.type = del and 101 > 1 then
3: �~ f- Isol[O].strl
4: for (i=l; i < Isoll; i++) do
5: sol[i].pos f- sol[i].pos - �~

6: �~ f- �~ + Isol[i].strl
7: end for
8: end if
9: return sol

Based on selfl'I, we could define the following two
simple utility functions: getSubOpList(sq) collects a list
of sub-operations of all operations in a given sequence
sq, after applying selfl'I' on every sq[i]; and function

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B271
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009. B271

combineSubOpList(ol) returns a sequence of composite op
erations by combining all their sub-operations in a given list
ole These two functions are inverse of each other. For space
reasons, we leave out their specifications in this paper.

4.5. IT Algorithms

In this subsection, we first discuss the most basic IT
functions and then discuss advanced IT functions that in
volve at least one list (sequence) of primitive operations.

4.5.1 Basic IT Functions

In the most basic form, function IT(OI' 02) transforms a
primitive operation 01 with another primitive operation 02
and outputs result �o�~�. As will be shown shortly, the output
result is sometimes a composite operation. By the types of
the two involved operations, insert (I) and delete (D), we de
fine four functions, ITII, ITID, ITDI, and ITDD, as in Algo
rithms 5-8, respectively. According to [10], the precondi
tion of IT(01,02) is 01U02 and the postcondition is 02 �~ �o�~�.

Intuitively, the positions of two operations must be defined
in the same state so as to be compared in transformation.
We will discuss the precondition further in Section 5.

Algorithm 5 /T//(OI' 02) : �o�~

1: �o�~ f- 01
2: if 02'POS < 01'POS then
3: �o�~ .pos f- �o�~ .pos + 102.strl
4: else if 02'POS = 01'POS and 02.id < oi.id then
5: �o�~ .pos f- �o�~ .pos + 102.strl
6: end if
7: return �o�~

Algorithm 6 /T/D(01, 02) : �o�~

1: �o�~ f- 01
2: if 01'POS > 02'POS then
3: if 01.POS 2 02.POS + 102.strl then
4: �o�~ .pos f- �o�~ .pos - 102.strl
5: else
6: �o�~ .pos f- 02.POS
7: end if
8: end if
9: return �o�~

Algorithm 5 transforms insertion 01 with another inser
tion 02 to incorporate the effects of 02. As shown in the
condition of line 2, if 02.POS is on the left of 01'POS, mean
ing 01'str is to be inserted after 02.str is inserted, then
01.POS should be shifted to the right by 102.strl characters.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 19,2010 at 02:57:11 UTC from IEEE Xplore. Restrictions apply.

4.5.2 Sequence-Related IT Functions

Algorithm 9 /TOSq(o, sq) : 0'

1: 0' �~ 0

2: ol �~ getSubOpList(sq)
3: o'.sol �~ ITLL(o'.sol,ol)
4: return 0'

Algorithm 10 /TLL(Oll, Ol2) : ol

1: if oii = [] or Ol2 = [] then
2: ol �~ Oll
3: else
4: OlH �~ ITOL(oll.head, Ol2)
5: OlT �~ ITLL(oll.tail, Ol2)
6: ol �~ OlH ·OlT
7: end if
8: return ol

Algorithm 11 /TOL(0, Ol2) : ol

1: if Ol2 = [] then
2: ol �~ [0]
3: else
4: 0' �~ IT(0,ol2.head)
5: ol �~ ITLL(o'.sol, Ol2.tail)
6: end if
7: return ol

Now we specify the two functions, /TOSq and /TDsq/,
that are used in function updateHR (Algorithm 2). As
shown in Algorithm 9, function ITOSq(o,sq) transforms an
operation 0 with a sequence sq. To do that, we need to
transform 0 one by one with every operation sq[i]. How
ever, both 0 and sq[i] could be composite. To simplify pro
cessing, we first collect all sub-operations of sq in list ol by
calling function getSubOpList(sq). Then, we use another
algorithm to transform one list o.sol with another list ol.

The algorithm to transform two lists is implemented by
a double recursion of two functions, ITLL and ITOL. As
shown in Algorithm 10, ITLL(oll' Ol2) transforms one list
Oll with another list Ol2. In the simplest case, if Oll or
Ol2 is empty, just return Oll. Otherwise, we divide Oll into
two parts, its first element Oll.head and the rest of the list
ol.i.iail. Then we call function ITOL to transform operation
ole.head with list Ol2' yielding OlH, and call function ITLL
to transform list oli.tci! with list Ol2, yielding OlT. Finally,
we concatenate these two partial results, OlH and OlT, and
return OlH . OlT as the result of ITLL(oll' Ol2).

Digital Object Identifier: 10.41OBI/CST.COLLABORATECOM2009. B271
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B271

In Algorithm 11, function ITOL(o, Ol2) transforms an
operation with a list Ol2. Given a non-empty list Ol2, we
need to transform 0 with operations in Ol2 one by one. De
pending on types of the two involved operations, we first
call some IT(o, ol2.head) to transform 0 with the first op
eration in Ol2' yielding intermediate result 0'; then we call
ITLL(o'.sol, Ol2.tail) to transform o'.sol with the rest of list
Ol2. Note that the intermediate list o'.sol may be a singleton
if the result is an atomic operation.

Algorithm 12 /TDsq/(sq, 0) : sq'

1: 01 �~ 0

2: ol i �~ getSubOpList(sq)
3: Ol2 �~ []
4: for(i=O;i < lolll;i++)do
5: 02 �~ 01

6: 01 �~ ITID(Ol,oll[i])
7: 0d �~ ITDI(oll[i],02)
8: Ol2 �~ Ol2 . (Od.sol)
9: end for

10: sq' �~ combineSubOpList(ol2)
11: return sq'

Next, we specify function /TDsq/(sq, 0) for transforming
a sequence sq with an operation 0 to incorporate the effects
of 0 into every operation in sq, as shown in Algorithm 12.
Since /TDsq/ is only called in Algorithm 2, we know that its
input sq is deletion-only and 0 is but an insertion. A pitfall
in implementing /TDsq/(sq,o) is to naively transform every
operation in sq with 0 one by one. The input precondition is
sqUo, or sq[O] Uo. Hence it makes sense to do IT(sq[O] , 0).
However, for the next operation, sq [1], the relation is not
sq[l] U o. Hence it makes no sense to do IT(sq[l], 0). The
fix is to first transform 0 with sq[0], yielding 0', and then
transform sq[l] with 0'. Following this idea, we first collect
all sub-operations of sq into list oli: for every operation
in Oll' we transform 0 with Oll[i], and then transform Oll[i]
with 0, yielding 0d. All sub-operations in os are collected in
list Ol2. Finally, we combine the sub-operations and return
a sequence of composite operations sq'.

4.6. SWAP Algorithms

We first present the basic swap functions for swapping
two primitive operations, and then discuss advanced swap
functions that involve sequences of operations.

4.6.1 Basic swap Functions

Given two operations 01 and 02, where 01 t---+ 02, func
tion swaptoi, 02) transposes them into �o�~ and �o�~ such that
�o�~ t---+ �o�~�. Depending on their types, insert (I) and delete

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 19,2010 at 02:57:11 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 19,2010 at 02:57:11 UTC from IEEE Xplore. Restrictions apply.

