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Abstract—Operational transformation (OT) is an optimistic
consistency control method for supporting collaboration over
high-latency networks. The technique lies in the heart of
many recent products such as Google Wave. It replicates
the shared data and allows the users to concurrently modify
any part of a shared document in a nonblocking manner.
Most of the published results only support two characterwise
primitives and take O(|H|2) or even longer time to integrate
one remote characterwise operation, where H is the operation
history. However, as the history grows long and operations
are integrated in batches, the high complexity can make an
algorithm easily exceed the 100 ms responsiveness threshold
that is critical for interactive applications. This paper proposes
a new OT algorithm that supports string primitives and reduces
the time complexity to O(|H|). The result can be used in
a range of parallel and distributed applications that can be
abstracted as realtime group editors.

Keywords-Collaborative Systems; Data Consistency; Group
Editing; Operational Transformation

I. INTRODUCTION

A fundamental challenge in supporting collaboration over

wide-area networks is high communication latencies. Data

replication is a common approach to achieving high avail-

ability and performance in the wide area [9]. By replicating

shared data at multiple sites, users can quickly access the

shared data even when remote replicas are unavailable, e.g.,

due to site failure and network partition.

Operational transformation (OT) is a lock-free, nonblock-

ing data replication technique that was originally motivated

in the context of group editing [2]. The technique has

been implemented in many products including CoWord [15],

ACE, Gobby, SubEthaEdit, and most recently Google Wave.

In an OT-based group editor, operations are first applied on

the local replica as soon as generated and then propagated

to remote sites in the background; remote operations are

transformed before execution such that consistency can

be maintained without a total order of operations. As a

result, the local response time is not sensitive to networking

latencies and the group editor can be as responsive as a

single-user editor; users are allowed to modify any part of

the shared data in parallel without blocking each other.

A large number of OT algorithms [4], [8], [12], [13], [17]

have been proposed. To the best of our knowledge, the vast

majority of published OT algorithms take O(|H|2) or even

longer time to integrate one remote operation [5], where

H is the operation history. Except for [14], they generally

only support two characterwise primitives, insert and delete,

which implies a practicality gap when supporting the com-

monplace string operations. In addition, for better utilization

of system resources, operations are usually propagated and

integrated in batches [7]. The consequence is that the history

can grow so fast that even integrating one operation may

exceed the 100 ms interactivity requirement [5]. As a result,

previous works have to keep the history short enough to

warrant interactivity. This is achieved by periodically and

frequently garbage-collect operations in the history, which

could be an expensive process itself [6], [14].

This paper presents a novel OT algorithm that extends

the latest theoretical result in this area, Admissibility-Based

Transformation or ABT [8], [6], to support efficient string-

wise operations. Due to its focus on correctness, ABT only

considers two characterwise primitive operations with time

complexity O(|H|2). The new algorithm is called ABT-

String Optimized or ABTSO. By supporting stringwise

operations and improving the time complexity to O(|H|),
ABTSO can ensure the 100ms interactivity requirement even

with a much longer history. This is achieved by keeping

history operations in a special order called the operation ef-

fects relation [4], [8], [6], which is conceptually the relative

position of objects inserted or deleted by the operations. Our

experimental results will show that the optimized stringwise

algorithm is much more efficient than its characterwise and

unoptimized stringwise counterparts.

The rest of this paper is organized as follows. The next

section introduces the background. Section III presents the

ABTSO algorithm. Section IV analyzes complexities and

presents experimental results. Section V compares related

works. Finally, Section VI concludes.

II. BACKGROUND AND NOTATIONS

We first use a simple scenario that actually happened in

one of the author’s software project to show how an OT-

based system works. Suppose that two users, Alice and

Bob, collaboratively maintain a shared document containing

a list of modules in a system they are developing together.
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Initially, there is only one module named “email” in the list.

The document is replicated so that the users work in parallel

on different modules. Let the first position of a string be

zero. Alice extends the list to “chat,email” by operation oA

= ins(0, “chat,”) to add her module “chat”. Concurrently,

Bob extends the list to “email,calendar” by operation oB =

ins(5, “,calendar”). Now the two sites diverge.

When Alice receives oB , if it were executed as-is, then

Alice’s document would become “chat,,calendaremail”. The

basic idea of OT is to transform oB in this situation such that

its resulting form can be safely executed in current state of

the shared document “chat,email”. Considering that oA has

inserted a string “chat,” to the left of the intended position

of oB , we should shift the position of oB by the length of

that string, resulting in o′
B
= ins(10, “,calendar”). Execution

of o′
B

on Alice’s document yields “chat,email,calendar”.

Meanwhile, Bob receives oA and executes it as-is, also

yielding ”chat,email,calendar”. In this case, the position of

oA is not shifted because the execution of oB on its right side

does not invalidate its position. Now the two sites converge

with the desired result.

From the above scenario, we know that ensuring a total

order of operations (e.g., oA followed by oB) can achieve

convergence but the result may not be what the users want.

The power of OT lies in that it not only achieves convergence

but also preserves operation intentions [14] or the operation

effects relation [4], [8] without relying on a total order of

execution. Any pair of operations can be transformed to

commute in a well-design OT algorithm.

Suppose that there are a number of participants in a

collaborative session. Each participant is called a site which

is identified by a unique site id. All sites begin with the

same copy of the shared data which is abstracted as a string

of characters. Objects are identified by their positions in the

string with the first position being zero. An operation o is

represented as a quintuple (id, type, pos, str, vt), where id

is identifier of the site that generates o; type is the operation

type, either ins or del; pos is the position in the string where

o is executed; str is the string to be inserted or deleted; and

vt is the vector timestamp when o is generated. An operation

can be abbreviated as ins(pos, str) and del(pos, str).
As shown in [14], when a stringwise deletion is trans-

formed with another insertion or deletion, the deletion will

be split into two or more sub-operations. The handling of

deletion splits is very tricky and the discussions would be

complicated. This paper simplifies presentation by avoiding

deletion splits. Using notation |s| for the length of string s,

we keep |o.str| = 1 when o is a deletion.

In distributed systems, vector timestamps are widely used

for determining the happens-before (→) and concurrent

(‖) relations between operations [2], [3]. Given any two

operations o1 and o2, their relation is denoted as o1 → o2 if

o1 happens before o2; their relation is denoted as o1 ‖ o2 if

neither o1 → o2 nor o2 → o1. An operation o is causally-

ready, if all operations that happen before o have been

executed at the site in question.

Following [13], an operation o’s definition state dst(o), is
the state in which o.pos is defined. Given any two operations

o1 and o2: if dst(o1) = dst(o2), then they are contextually

equivalent, denoted as o1 ⊔ o2; if o2’s position is defined

in the immediate state of applying o1, then o1 and o2 are

contextually serialized, denoted as o1 7→ o2.

Any two executed operations can be ordered by their

effects relation ≺, which conceptually is the relative position

of the objects the two operations insert or delete. In the

above example, oA ≺ oB because the relative position of

oA’s effect “chat,” precedes that of oB’s effect “,calendar”.

The concept is rigorously defined in [8], [6].

An operation sequence is a list of operations that are

contextually serialized. An empty sequence is denoted as

[ ]. An operation sequence sq that has n elements is de-

noted as sq = [o1, o2, . . . , on]. Operator · concatenates two

sequences, or a sequence and an operation.

III. THE ABTSO ALGORITHM

This section will first show the structure of the ABTSO

algorithm and then discuss the functions involved.

Each site maintains an operation log H which logs oper-

ations that have been executed at the current site. Similarly

to ABT [8], ABTSO maintains H as a concatenation of

two operation sequences, Hi and Hd, where Hi is the

insertion log and Hd is the deletion log. The difference

is mainly that in ABTSO operations in each subsequence

are in their effects relation order, while in ABT they are in

execution order. As a result, the time complexity of ABT is

O(|Hi|
2 + |Hd|) whereas that of ABTSO is O(|H|).

In addition to the operation log H , each site also maintains

a receiving queue RQ which keeps the operations received

from other sites. A state vector sv indicates the number of

operations from every site that have been executed at current

site. sv is a list of N integers, where N is the total number

of sites in the system.

The overall control procedure of any site j is as shown

in Algorithm 1. When site j is initialized, H and RQ are

empty; all elements of sv are set to zero. After initialization,

there are three concurrent threads running in site j:

Thread I is called every time a local operation o is

submitted. It executes o locally, adjusts sv by incrementing

its j-th element, sets o’s timestamp to sv, calls algorithm

LIntegrate to integrate o into the history H , and broadcasts

the transformed o′ to the network.

Thread II is called when a remote operation arrives from

other sites. It just appends the received operation to RQ.

Thread III first checks whether there are causally-ready

operations in RQ. The determination is easily done by

comparing sv and o.vt [14]. If there are no causally-

ready operations in RQ, thread III does nothing. Otherwise,

algorithm RIntegrate is called to integrate o into H . After
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Algorithm 1 Control Procedure of Site j

1: initialization:

2: H ← []
3: RQ← []
4: sv ← [0, 0, ..., 0]

(thread I) submission of local operation o:

5: execute(o)

6: sv[j]← sv[j] + 1
7: o.vt← sv

8: (o′,H)← LIntegrate(o,H)
9: propagate o′

(thread II) receipt of operation o from network:

10: RQ← RQ · o
(thread III) invocation of remote operation o:

11: if exists causally-ready o∈RQ from site k then

12: (o′,H)← RIntegrate(o,H)
13: execute(o′)

14: sv[k]← sv[k] + 1
15: end if

that, the resulting o′ produced by RIntegrate is executed.

Supposing that o is originally submitted at site k, the

corresponding element of sv is incremented.

These three threads share variables and must be carefully

synchronized in implementation. Thread I is given the high-

est priority so that local operations are always executed as

soon as they are submitted. Thread III is executed only when

no local operation is being processed.

A. Algorithm LIntegrate

Procedure LIntegrate (Local-Integrate) is called by Thread

I in the control procedure when a local operation is gener-

ated. As specified in Algorithm 2, it mainly achieves the

following three goals:

(a) Adding the newly generated operation o into the

operation log H . The operation log H records all the

executed operations. A newly generated insert opera-

tion will be added into Hi, while a delete operation

will be added into Hd.

(b) Keeping the operation log H ordered by the effects

relation. As will be shown later, by keeping H ordered

by the effects relation, all the involved transformation

functions can be done in O(|H|) time.

(c) Excluding all the effects of Hd from o. The reason for

this goal is for correctness [8].

When a local operation is generated in the current state,

Hi 7→ Hd 7→ o. By the type of o, there are two cases:

If o is a delete operation, to achieve goal (a), o can be

appended directly to Hd. To achieve goal (b), however, o

needs to be inserted into an appropriate position in Hd. This

is done by mergeDSQ that adds o into Hd by the effects

relation order. Procedure mergeDSQ will be presented later

in Subsection III-D. To achieve goal (c), a swapping process

Algorithm 2 LIntegrate(o,H):(o′,H ′)

1: H ′

i
← Hi

2: (o′,H ′

d
)← swapSQ(Hd, o)

3: if o.type = ins then

4: H ′

i
← mergeISQ(Hi, o

′)
5: else

6: H ′

d
← mergeDSQ(Hd, o)

7: end if

8: return (o′,H ′

i
·H ′

d
)

(swapSQ) is called in line 2 to swap Hd with o. The swapSQ

procedure is defined in Subsection III-F.

If o is an insert operation, because Hi 7→ o does not

hold, o must be transposed to the tail of Hi by swapping

it with Hd before adding it into Hi. This swap process is

also done by swapSQ procedure. After swapping Hd with o,

Hi 7→ o′ 7→ H ′

d
. Now o′ can be merged into Hi by calling

mergeISQ that adds o into Hi by the effects relation order.

Procedure mergeISQ will be presented in Subsection III-D.

After the above swapping and merging steps, the new

history H ′

i
·H ′

d
and the resulting o′ are returned to the control

procedure, in which o′ will be propagated to remote sites.

B. Algorithm RIntegrate

Procedure RIntegrate (Remote-Integrate) is called by

Thread III in the control procedure when a remote causally-

ready operation is processed. As specified in Algorithm 3,

it mainly achieves the following three goals:

(a) Obtaining an appropriate version of o that can be

safely executed in the current state.

(b) Adding the remote operation o into the history log H .

Similarly to LIntegrate, an insertion will be added into

Hi, while a deletion will be added into Hd.

(c) Keeping the log H ordered by the effects relation.

The appropriate version (o′) of o that can be safely

executed must be defined in the current state. That is, it must

satisfy Hi · Hd 7→ o′. By the temporal relations between

o and the operations in H , the operations in H can be

divided into two classes: operations that happen before o

and operations that are concurrent with o. According to

Algorithm 2, o does not include the effects of any delete

operations that happen before it when it is propagated. In

addition, let csqi be the sequence of insert operations that

are concurrent with o. Then o also does not include the

effect of csqi. Therefore, we must inclusively transform o

with csqi and Hd to obtain the appropriate version defined in

the current state. Extracting the concurrent insert operation

sequence is done by Algorithm 4 which is defined in the

next subsection. The inclusive transformations are done by

calling ITOSq procedures in line 3 and line 4 of Algorithm

3 to include the effects of csqi and Hd, respectively. As a

result, o′′ includes the effects of csqi, and o′ includes the

effects of both csqi and Hd.
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Algorithm 3 RIntegrate(o,H):(o′,H ′)

1: H ′

i
← Hi

2: csqi ← getConcurrentSQ(o,Hi)
3: o′′ ← ITOSq(o, csqi)
4: o′ ← ITOSq(o′′,Hd)
5: if o.type = ins then

6: H ′

i
← mergeISQ(Hi, o

′′)
7: H ′

d
← ITSqO(Hd, o

′′)
8: else

9: H ′

d
← mergeDSQ(Hd, o

′)
10: end if

11: return (o′,H ′

i
·H ′

d
)

If o is a delete operation, then o′ can be safely merged into

Hd by calling procedure mergeDSQ. This merge achieves

both goals (b) and (c), that is, adding o into Hd by the

effects relation order.

When o is an insert operation, similarly, o′′ can be

correctly added into Hi by calling procedure mergeISQ.

However, adding o′′ into Hi would invalidate the definition

states of the operations in Hd. In order to keep the H ′

i
7→ H ′

d

relation, the operations in Hd must include the effect of

o′′. After including the effects of csqi into o′′, o′′ ⊔ Hd.

Therefore the operations in Hd can correct their positions

by including the effect of o′′. This inclusion is done by the

ITSqO procedure which is defined in Subsection III-E.

Finally, the updated operation log H ′

i
·H ′

d
and the trans-

formed operation o′ are returned to the control procedure.

C. Extract Concurrent Operations

In Algorithm 3, we need to extract all operations in Hi

that are concurrent with a given remote operation o. Actually

most OT algorithms need to do so, e.g., [12], [13], [4], [8].

For given o and sq, in general, they all scan sq left to right:

for every sq[i], if sq[i] ‖ o, it is appended to sqc; or if

sq[i] → o, it is swapped with all operations in sqc and

then appended to sqh. As a result, sq is transposed into

sqh · sqc. This process takes time O(|sq|2) and is the most

time-consuming step in those algorithms [5].

However, this step could be much simplified in ABTSO.

Observe that we do not really need the resulting subsequence

sqh and our input sequence is ordered by the effects rela-

tion. For example, consider a sequence sq=[o1, o2] that is

already in effects relation order, where o1 = ins(0,“ab”) and

o2=ins(2,“cd”). Suppose that for the operation o in question

we have o1 ‖ o and o2 → o. We can just directly pick up

o1 because swapping o1 and o2 changes o2 but not o1 and

we do not need o2 at all.

By exploiting this property of effects relation ordering,

the procedure of extracting concurrent operations can be

drastically simplified, as shown in Algorithm 4. All we need

to do is pick up the operations that are concurrent with o

Algorithm 4 getConcurrentSQ(o, isq) : csq

1: csq ← [ ]
2: for (i← 0; i < |isq|; i++) do
3: if isq[i] ‖ o then

4: csq ← csq · isq[i]
5: end if

6: end for

7: return csq

one by one. Obviously the time complexity is reduced to

linear in the size of the input sequence, i.e., O(|Hi|).

D. Merge Operation into Sequence

In ABTSO, operations in H are ordered by the effects

relation. This property is mainly maintained by the merging

procedures, mergeISQ and mergeDSQ. Every time a new

insert or delete operation is merged into Hi or Hd, this

property is preserved.

Algorithm 5 mergeISQ(sq, o) : sq′

1: sq′ ← [ ]
2: for (i← 0; i < |sq| and sq[i].pos < o.pos; i++) do

3: sq′ ← sq′ · sq[i]
4: end for

5: sq′ ← sq′ · o
6: for (;i < |sq|;i++) do
7: sq[i].pos← sq[i].pos + |o.str|
8: sq′ ← sq′ · sq[i]
9: end for

10: return sq′

Procedure mergeISQ(sq,o) is specified in Algorithm 5.

The precondition is sq 7→ o. After merging, o is part

of sq′ and sq′ is effects equivalent with sq · o. Both sq

and sq′ are in effects relation order. To find the proper

position in sq to add o, we need to compare the relative

positions of sq[i] and o, where 0 ≤ i < |sq|. Exploiting
the operation ordering, we can first swap sq[i] to the end

of sq such that sq[i]′ 7→ o. Since sq is ordered by effects

relation, sq[i]′ will be the same as sq[i] for same reasons as

explained in Section III-C. Because sq[i]′ and o are executed

in tandem and sq[i]′ = sq[i], we know that sq[i] ≺ o if

sq[i].pos < o.pos, or o ≺ sq[i] if sq[i].pos ≥ o.pos. In the

final result sq′, the operations that precede o by the effects

relation will be kept as-is and the operations that follow o

need to be adjusted by |o.str| to account for the effects of

o. For example, suppose sq = [ins(0, “xy”), ins(2, “ab”)]
and o = ins(1, “cd”). After the merge, sq′ will be

[ins(0, “xy”), ins(1, “cd”), ins(4, “ab”)].

Similarly, Procedure mergeDSQ(sq,o) is specified in Al-

gorithm 6. Note that |o.str| in line 7 is always 1, as defined
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Algorithm 6 mergeDSQ(sq, o) : sq′

1: sq′ ← [ ]
2: for (i← 0; i < |sq| and sq[i].pos ≤ o.pos; i++) do

3: sq′ ← sq′ · sq[i]
4: end for

5: sq′ ← sq′ · o
6: for (;i < |sq|;i++) do
7: sq[i].pos← sq[i].pos− |o.str|
8: sq′ ← sq′ · sq[i]
9: end for

10: return sq′

in Section II. If o.str is not constrained to be a character,

then Algorithm 6 will go wrong since o.str may split [14].

E. IT Algorithms

Now we specify two sequence related inclusion transfor-

mation functions, ITOSq and ITSqO. Function ITOSq(o,sq)

transforms an operation o with a sequence sq. Function

ITSqO(sq,o) transforms a sequence sq with an operation o.

In both cases, the precondition is sq ⊔ o.

By the input types, we can define four ITOSq functions,

that is ITOSqii, ITOSqid, ITOSqdi and ITOSqdd. Here we

only specify ITOSqii because the four functions are similar.

Algorithm 7 ITOSqii(o, sq) : o′

1: o′ ← o

2: for (i← 0;i < |sq|;i++) do
3: if (sq[i].pos > o′.pos) then

4: break

5: else if (sq[i].pos < o′.pos) then

6: o′.pos← o′.pos + |sq[i].str|
7: else if (sq[i].pos=o′.pos) and (sq[i].id<o.id) then

8: o′.pos← o′.pos + |sq[i].str|
9: end if

10: end for

11: return o′

As specified in Algorithm 7, function ITOSqii(o, sq) trans-

forms an insertion o with an insertion sequence sq from left

to right to incorporate the effects of insertions in sq one by

one. There are three cases to consider:

1) When sq[i].pos > o.pos, it means that o.str will be

inserted to the left hand of sq[i].pos and hence we do

not need to shift o.pos. By the effects relation ordering,

because all operations following sq[i] have effects to

the right of sq[i].pos, they will also be skipped.

2) When sq[i].pos < o.pos, it means that o.str will be

inserted after sq[i].pos. Hence o.pos should be shifted

to the right by |sq[i].str| characters to incorporate the

effects of sq[i].

Algorithm 8 ITSqOdi(sq, o) : sq′

1: sq′ ← sq; ∆← 0
2: for (i← 0;i < |sq|;i++) do
3: if (sq[i].pos + ∆) < o.pos then

4: ∆← ∆ + |sq[i].str|
5: else

6: sq′[i].pos← sq[i].pos + |o.str|
7: end if

8: end for

9: return sq′

3) When o.pos = sq[i].pos, we use a priority scheme,

e.g., by comparing their site ids, to break the tie such

that the two effects are ordered by their site ids in the

result. If o.id is greater, o.pos is shifted to the right.

Next, we specify function ITSqO(sq, o). Function ITSqO

is called in Algorithm 3, and only ITSqOdi(sq, o) is needed

to be specified, as shown in Algorithm 8. Note that only the

operations that follow o in the effects relation need to adjust

their positions to incorporate the effects of o. What we need

to do is to find these operations in sq. Because sq is ordered

by effects relation, there exists some place in sq such that all

the operations on its left precede o and all the operations on

its right follow o. In order to compare the relative positions

between any sq[i] and o, we first swap sq[i] to the head of sq

such that sq[i]⊔o. This can be achieved by excluding effects

of all operations that precede sq[i]. Suppose the operations

sq[0] . . . sq[i − 1] delete ∆ characters in total, then after

the swap sq[i].pos will be sq[i].pos + ∆. By comparing

the relative positions (line 3), the effects relations between

sq[i] and o can be determined. After that, all operations that

follow o just need to adjust their positions by |o.str| to
account for o’s effects.

F. Swap Algorithms

Function swapSQ(sq,o) transposes a sequence sq and an

operation o, where sq 7→ o, into sq′ and o′ such that

o′ 7→ sq′. By the input types, we can define four functions:

swapSQii, swapSQid, swapSQdi and swapSQdd. However,

since swapSQ is only called in Algorithm 2 with Hd as the

input, we only need swapSQdi and swapSQdd. Here we only

specify swapSQdi because the other works similarly.

Intuitively, function swapSQdi can be achieved by swap-

ping every operation in sq with o from right to left. However,

by the effects relation, o only needs to shift its position

to exclude the effects that precede o, while the operations

that follow o need to adjust their positions to include the

effect of o. Let ∆ be the total number of characters deleted

by the operations that precede o. Operation o needs to

shift its position by ∆ characters to exclude the effects of

operations that precede o. The operations that follow o need

to shift their positions by |o.str| characters. Similarly to
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Algorithm 9 swapSQdi(sq, o) : (o′, sq′)

1: o′ ← o; sq′ ← sq; ∆← 0
2: for (i← 0;i < |sq| and sq[i].pos < o.pos;i++) do

3: ∆← ∆ + |sq[i].str|
4: end for

5: o′.pos← o.pos + ∆
6: for (;i < |sq|;i++) do
7: sq′[i].pos← sq[i].pos + |o.str|
8: end for

9: return (o′, sq′)

Algorithm 5, in order to compare the relative positions, we

first swap sq[i] to the end of sq. Because sq is ordered by

effects relation, sq[i].pos will remain as-is. Consequently,

sq[i].pos and o.pos can be directly compared (line 2).

IV. COMPLEXITIES AND EXPERIMENTS

The space complexity of ABTSO is trivially O(|H|). As
specified in Section III, all the procedures only need to

scan H once. Hence, the time complexity of ABTSO (i.e.,

procedure LIntegrate and RIntegrate) is clearly O(|H|).
In ABTSO, stringwise insertions are processed as-is.

However, to avoid deletion splits that complicate transfor-

mations, we proactively split every stringwise deletion into

characterwise deletions when it is generated by the user. This

does not hurt the asymptotic complexity.

According to [5], [14], threads I and III in the control

procedure (Algorithm 1) must be mutually exclusive. Con-

sequently, when a remote operation is being integrated by

thread III, the user interface is usually locked and thread I

must wait. Therefore, the performance of integrating remote

operations does impact local responsiveness.

In our experiments, we implemented three algorithms

ABT, ABTS, and ABTSO and compare their performance.

ABT [8], [6] is our latest characterwise algorithm. ABTS

[10] is ABT extended with stringwise operations. We com-

pare the performance of ABT and ABTS to see the impacts

of string versus character operations, and compare the per-

formance of ABTS and ABTSO to further see the impacts

of our optimization. As discussed in [5], most existing

OT algorithms take at least O(|H|2) to integrate a remote

operation. The complexity of ABT is O(|Hi|
2+|Hd|), which

is faster than O(|H|2) by some factor depending on the ratio

of insertions in the history. Hence using ABT as the baseline

in our experiments does not lose generality.

The algorithms were implemented in C#, compiled using

Linux Mono C#, and executed on a HP Compaq nx5000

laptop with a 1.50 GHz Intel Pentium M CPU and 512 MB

DDR RAM. The OS is Arch Linux with kernel 2.6.29.

The experiments are designed to study how long it takes to

integrate N remote string operations into the local sequence

H . Note that N is the size of operation propagation in

realtime group editors [7] and hence we assume a relative
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Figure 1. Time to integrate two sequences of string operations on a HP
Compaq nx5000 laptop using ABT, ABTS, and ABTSO.

small N . The two sequences are generated concurrently

with operation positions roughly uniformly distributed over

a large shared document. The document is but an instance

of the String type in C#. Each operation is generated with

equal probability in any position in the string.

Due to the page limit of this paper, we simplify the

experiments such that the insertion ratio is set to 80% and

the string length of each operation is 5. Both |H| and N are

the number of string operations. |H| varies from 0 to 200

with step 20 and N varies from 0 to 100 with step 10. In
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ABT, every user-input string insertion or deletion is treated

as 5 character operations. In ABTS and ABTSO, while

string insertions are processed as-is, every delete operation

is processed as 5 character deletions. Each experiment is

repeated 25 times and the average values are recorded.

The experimental results are as shown in Figure 1.

ABTSO is clearly faster than ABTS and ABT by an order of

magnitude, while ABTS is faster than ABT by some factor.

Since we focus on real-time collaborative applications, we

chose small values for the lengths of the sequences so as

to observe the effects around the general responsiveness

threshold of 100ms [11]. However, their performance would

contrast more sharply if longer sequences were used.

It has been well understood in previous work [14], [7]

that the granularity of propagation and the frequency of

history garbage collection must be chosen such that the

100ms constraint can be ensured. However, they do not

address what those values are like in practice. Based on our

experimental results, we make the following observations.

First, the data suggests a threshold N for propagating

local operations and integrating remote operations. For ex-

ample, let |H| be 200. ABT takes 645ms to integrate 10

remote operations, implying that N must be far less than

10. ABTS takes 112ms to integrate 20 remote operations,

implying that N could go up to between 10 to 20. ABTSO

takes 98ms to integrate 60 remote operations, implying that

N can be as many as 60. A larger granularity of propaga-

tion means better utilization of networking resources since

more operations can be multiplexed in one application-level

message; and a larger granularity of integration means better

awareness between the users since more remote operations

can be made visible in a shorter time.

Next, the data suggests a threshold |H| for history garbage
collection. For example, let the propagation and integration

granularity N be 20. When |H| is 20, ABT takes 130ms to

integrate the 20 remote operations, implying that its history

size should be no more than 20. When |H| is 180, ABTS

takes 99ms to integrate the 20 remote operations, implying

that its history size can go up to 180. In contrast, even

when |H| is 200, ABTSO only takes 32ms to integrate

the 20 remote operations. Hence the |H| threshold for

garbage collection in ABTSO can be much larger than 200.

These data indicate that under specific responsiveness and

granularity requirements, the optimized ABTSO algorithm

can considerably mitigate the needs and costs for garbage

collection than its unoptimized competitors.

V. RELATED WORK

Traditional consistency control methods such as locking

and timestamping either force users to take turns or result in

loss of work when concurrent user operations are serialized

to achieve convergence. They generally focus more on

system efficiency rather than human productivity. In contrast,

OT is a lock-free, nonblocking technique that is proposed

with the goal to improve individual and group productivity

in cooperative work [2]. Several researchers, e.g., [1], [2],

[14], have contributed to the understanding of the advantages

of OT over these alternative consistency control techniques.

In OT-based systems, it is understood that convergence

is not enough. To constrain the converged data content,

Sun et al [14] propose to preserve operation intentions.

Alternatively, our recent results [8], [6] have established

more formal, provable correctness conditions. This work

(ABTSO) further optimizes the algorithm performance.

Numerous OT algorithms have been proposed in the

context of realtime group editors, e.g., [12], [13], [14], [17].

Most of them need to transpose the entire history to obtain

the concurrent operations when integrating a remote oper-

ation. This transposition procedure is called Convert2HC

in [5], which is the most time-consuming step in these

algorithms. As analyzed in [5], this procedure is O(|H|2).
In ABTSO, the Convert2HC procedure is substituted by

getConcurrentSQ, which is only O(|H|) by keeping H

ordered in the operation effects relation [8], [6].

To the best of our knowledge, GOT [14] is the first and the

only OT algorithm in the literature that has fully presented

handling of stringwise operations. The time complexity of

GOT is at least O(|H|2). By comparison, the operation

history H in GOT is in the execution order while H in

ABTSO is in the effects relation order. ABTSO supports

stringwise operations yet simplifies the transformation func-

tions by avoiding deletion splits. As shown in Section IV,

this simplification does not undermine efficiency because

ABTSO is able to integrate an operation in O(|H|) time.

In real-time group editors, operations are usually propa-

gated and integrated in small batches for resource efficiency.

As discussed in [7], they generally propagate operations

say every 60 seconds or every 20 operations. However, no

previous work to our knowledge has addressed specifically

what the impacts of those policies are with regard to the

100ms interactivity requirement, as does our work.

Garbage collection (GC) is to remove from the history

of each site operations that have been executed at all sites

because they are not needed in future transformations [14].

According to [6], the GC process itself in ABT and hence

ABTSO takes O(|H|2) time in the worst case. By compar-

ison, previous works such as GOT [14] must do GC more

frequently due to their O(|H|2) or higher time complexity

when integrating remote operations; ABTSO generally takes

more time to do GC yet GC is less frequent due to its O(|H|)
time complexity for normal operations.

However, when our work is used in realtime group editors

that assume frequent propagation of operations, the system

can reach a quiescent state quickly, i.e., all generated op-

erations have been executed at all sites. We can schedule

GC in quiescent states such that the entire history can be

simply discarded or swapped out to a file without incurring

the above expensive O(|H|2) time transformations.
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VI. CONCLUSIONS

This paper presents a novel optimized stringwise transfor-

mation algorithm for supporting real-time collaboration over

wide-area networks. ABTSO improves the time complexity

of the state of art from quadratic to linear. Practically, by

transmitting and integrating operations in larger granules,

ABTSO is more efficient in terms of communication and

computation, which translates into better system perfor-

mance and usability. As a result, the work can be used in

a wide range of parallel and distributed applications that

can be abstracted as realtime group editors for lock-free,

nonblocking processing at cooperating sites.

To simplify presentation and stay focused on the main

contribution, the handling of deletion splits is omitted in

ABTSO and will be presented in a journal version of this

paper. However, it is worth noting that our unoptimized

ABTS algorithm as presented in [10] includes deletion splits.

In addition, for space reasons, detailed correctness proofs of

ABTSO are also left out because it is an optimization of

ABT that has been fully proved [8], [6].

In future research, we will extend this work to support se-

lective undo (e.g., as in [16]). Additionally, transformation-

based consistency control algorithms in general need well-

designed user interfaces to help end users make sense of the

integrated results and detect/resolve conflicts. We also plan

to look into these issues in future work.
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