
A Partial Replication Approach for Anywhere Anytime
Mobile Commenting

Huanhuan Xia1, Tun Lu1, Bin Shao2, Guo Li1, Xianghua Ding1, Ning Gu1

1School of Computer Science, Fudan University, Shanghai, China
2Microsoft Research, Beijing, China

{huanhuanxia,lutun}@fudan.edu.cn, binshao@microsoft.com, {guoli,dingx,ninggu}@fudan.edu.cn

ABSTRACT
Commenting systems play increasingly important roles in the
interactive web applications. Meanwhile, more and more web
applications are visited on mobile devices. However, the in-
termittent connection of mobile networks and resource limita-
tion of mobile devices pose great challenges, mainly in terms
of interactive responsiveness and data consistency. In this pa-
per, we present the first work of partial replication solution
based on collaborative editing techniques, which can address
the issues of local responsiveness and resource limitation on
mobile commenting systems. We report how we address the
consistency maintenance challenges that come with the par-
tial replication approach. With this approach, users are al-
lowed to smoothly comment anywhere anytime. The com-
ment thread can be incrementally updated and automatically
synchronized with strong data consistency guarantees. We
implemented a system prototype called Hydra and evaluated
it on a real data set.

Author Keywords
Commenting System; Partial Replication; Consistency
Maintenance; Synchronization.

ACM Classification Keywords
H.5.3 Information Systems: Group and Organization Inter-
faces; C.2.4 Computer Systems Organization: Distributed
Systems—Client/Server.

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
The last few years have witnessed that the Web has been e-
volving into an interactive and collaborative platform for a
great variety of web media, such as news, blogs, goods, mu-
sic, videos, tweets. Commenting systems can greatly im-
prove user interaction and collaboration on the web media, by
which users express their individual opinions or sentiments,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSCW’14, February 15–19, 2014, Baltimore, Maryland, USA.
Copyright © 2014 ACM 978-1-4503-2540-0/14/02...$15.00.
http://dx.doi.org/10.1145/2531602.2531609

and even contribute their insights, knowledge and creativi-
ty. There are many popular commercial commenting system-
s such as Disqus1, IntenseDebate2 and Livefyer3, which are
widely adopted by web sites to encourage user interaction and
participation. Taking Disqus for example, it has over 70 mil-
lion users; over 1.4 million sites are using its commenting
service; and about hundreds of thousands of comments are
generated everyday.

With the rapid development and penetration of mobile tech-
nologies, commenting activities become more pervasive.
Marketing-Charts’ mobile research found that 34% Facebook
users and 43% Twitter users access their accounts via mo-
bile phones [2]. For Sina Weibo, the biggest microblogging
system in China, 60% active users are mobile [1]. And the
growth still continues. The mobile users of Twitter increased
182% in 2011 [3].

However, we are still in the era when the internet mainstay is
not optimized for mobile devices. Specifically, most existing
commenting systems do not pay enough attention to mobile
users. Even some commenting systems have already taken
the screen size into consideration, many of them overlooked
another important difference between desktop PCs and mo-
bile devices, namely, network connection. Most mobile users
can surf the web, but not in a comfortable way due to intermit-
tent connection and high latency issues of mobile networks.

The network connection issues make smooth commenting
without disruption a big challenge in the mobile environment.
Users need to wait for the server response after clicking the
submit button. It usually gives users a long pause in the high-
latency mobile network. Even worse, sometimes nothing but
a failure notification is returned after the long pause when the
network connection is temporarily unavailable . And this re-
ally leads to bad user experience.

A widely used approach to addressing this problem in discon-
nected environments is optimistic replication [18]. With local
data replica, operations can be performed on the local replica
immediately in a non-blocking way. It is especially promising
to solve the responsiveness problems in mobile environment
by allowing offline operations when network is disconnected.
However, replication can lead to data inconsistency. How to
make an optimal trade-off between high responsiveness and

1http://disqus.com
2http://intensedebate.com/
3http://www.livefyre.com/

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

530

data consistency is a key technical challenge of interactive ap-
plications, such as online gaming [26], co-authoring [6, 23]
and collaborative software development [10].

Collaborative editing techniques, such as Operational Trans-
formation (OT) [6, 23] and Address Space Transformation
(AST) [7], are representative optimistic concurrency control
methods to address this challenge. To achieve high respon-
siveness, they adopt the full replication architecture. Local
operations can be applied immediately on the local replica to
obtain unconstrained local user experience. To maintain the
data consistency, before applying the remote operations on lo-
cal data replica, the remote operations (as in OT) or local data
replica (as in AST) are transformed to correctly incorporate
the effects of remote operations.

However, it suffers from resource constraints, and is usually
not necessary, to make full replicas for a commenting system
on mobile devices. Due to the spotty nature of comments and
the diversity of user interests, a user may slide many screens
before encountering worth-reading items, which makes full
replication useless in most cases. Partial replication of the
online content can not only save the network bandwidth and
battery life of the device, but also potentially make better user
experience of web surfing. Besides consistency maintenance
issue, partial data replication brings new challenges to OT and
AST.

In this paper, we contribute a novel partial replication ap-
proach to anywhere anytime mobile commenting experience.
It can be used by existing commenting systems to fetch and
construct a comment thread incrementally for mobile users,
achieve high local responsiveness in intermittent mobile net-
works, and synchronize the states of comment threads auto-
matically with strong data consistency guarantees. It is im-
portant to note that local responsiveness is different from real
time synchronization: the former can be achieved through da-
ta replication, whereas the latter relies on network conditions.

The contribution of this work are threefold. First, to the best
of our knowledge, it is the first work of applying collabo-
rative editing techniques in partially replicated architecture
for mobile commenting. Second, we addressed data consis-
tency maintenance issues that come with partial replication
approach by devising a partial replication scheme and a syn-
chronization protocol to synchronize the states of commen-
t threads. Third, a scalar timestamp based synchronization
protocol is designed for achieving efficient and scalable com-
menting systems.

The rest of the paper is organized as follows. Section 2 lays
out the approach overview and points out the technical chal-
lenges that have not been fully addressed by prior work. The
partial replication of comment threads and the corresponding
replication synchronization protocol are elaborated in Sec-
tion 3 and 4, respectively. Section 5 introduces the underlying
consistency maintenance technique in our approach. Our ap-
proach is evaluated in Section 6. Related work is discussed
in Section 7. Section 8 concludes the paper by summariz-
ing our contributions and discussing possible future research
direction.

Central Server

Primary Copy

Client

FETCH request

<comment query>

FETCH response

<comment operations>

FETCH request

FETCH response

Replica:
Skeleton Tree

SYNC request
<local operations>

SYNC response

<remote operations>

Figure 1. Approach sketch.

2. OVERVIEW

2.1 Approach Sketch
A commenting system consists of a dedicated server and a
number of clients as shown in Figure 1. For each comment
thread, the primary copy is maintained by the central serv-
er. Users can fetch and replicate any comments they want in
the thread, and local replicas are built incrementally on their
client devices.

When a user starts to participate in an online discussion, a
FETCH request will be sent to the server specifying what
comments are requested by the user, for example, the latest
comments. The requested comments will be returned to the
client in the form of commenting operations, and are main-
tained in a special data structure of the replica, which is called
the skeleton tree in our approach. The skeleton tree is respon-
sible for organizing the replicated comments and maintaining
their relationships, i.e. the parent-child relationship and sib-
ling relationship. To avoid transferring unnecessary data and
thus save the bandwidth of mobile users, the central server
tracks the states of each replica and responds to client’s sub-
sequent FETCH requests incrementally.

Users are allowed to freely perform commenting operations
on their local replicas in a non-blocking way, even in discon-
nected situations, e.g. posing, editing or deleting comments,
voting for other users’ comments etc.. Local operations are
executed immediately by the clients. Offline local operations
will be submitted to the server in a SYNC request to synchro-
nize the local replica with the primary copy when the network
is available. The primary copy on the central server will get
updated by integrating client’s local operations, and the oper-
ations from other users will be identified and returned to the
client for updating the local replica.

In replica synchronization, concurrent operations may cause
conflicts and lead to inconsistent comment thread state. In our

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

531

approach, AST [7] (Address Space Transformation), which is
originally proposed for group editing, is used to maintain the
data consistency. Before executing a remote commenting op-
eration, the concurrent operations are identified to transform
the local replica or the primary copy to the state in which the
operation was generated.

2.2 Technical Challenges
Existing collaborative editing techniques require that the
shared document are fully replicated on all collaborative sites.
To use them for consistency maintenance in partial replica-
tion and synchronization of comment threads, the following
technical challenges must be addressed:

• First, how to partially replicate a comment thread and in-
crementally construct the replica. In collaborative editing,
the shared document is fully replicated on all collabora-
tive sites. However, in commenting systems, users may
want any part of a comment thread. Moreover, during a
comment conversation, users may fetch their required com-
ments via several FETCH requests. Therefore, a replica-
tion scheme must be designed for incrementally construct-
ing the replica to save the bandwidth of mobile users.

• Second, how to identify concurrent operations and correct-
ly transform the comment thread state. In collaborative
editing, fully shared document and the complete operation
history can be used to easily identify concurrent operations.
In AST, the document transformation is realized by travers-
ing the whole document. So when the comment thread is
partially replicated, the AST must be adapted and the repli-
cation scheme should ensure adequate information can be
provided for AST to correctly perform the transformation.

• Third, how to meet the scalability requirement of comment-
ing systems and support user’s dynamic participation. Un-
like collaborative editing, a hot topic may attract thousands
of users in a short time, and users often join and leave a
conversation highly dynamically. Most existing collabora-
tive editing algorithms use vector timestamps to determine
the concurrent relation between operations. The size of the
vector timestamp is proportional to the number of the par-
ticipants and will consume considerable mobile bandwidth
under high degree of concurrency. Therefore, in our ap-
proach, an efficient concurrent operation detection method
and a scalable synchronization protocol based on the scalar
timestamp are devised for large-scale commenting system-
s.

3. PARTIAL REPLICATION OF COMMENT THREADS
Almost all existing commenting systems fetch a comment
thread incrementally, for example, loading a comment thread
page by page, expanding the nested comments only if a user
wants to read more. In addition to these common schemes, a
commenting system can even track and learn user comment-
ing behaviors, and provide personalized commenting experi-
ence. Our approach allow clients to incrementally fetch com-
ments with different schemes (e.g. “next 20 comments”, “all
comments posted by Alice” etc.). However, how to define a
comment query and perform a query are application specific,
and it is not the focus of this paper.

In this section, we first introduce a tree structure for model-
ing comments threads. Then we explain how a tree-structure
comment thread is partially replicated on clients as well as
the process of incrementally constructing a partial replica.

3.1 Comment Tree Structure and Primitive Operations
User interactions in a comment thread naturally form a tree
structure. Although it is not necessary for all commenting
systems to store comment threads as tree structures, it would
be very convenient to hide the differences of various physical
storage models (e.g. database, xml, disk file etc.) using a
generic data structure. In our approach, a comment thread
is modeled as a generic tree structure of a set of comments.
A comment is uniquely identified by a global identifier and
has a set of attributes, e.g. author, content, likes (i.e. the
number of users who like the comment) etc.. Replies to the
same parent comment node constitute an ordered list of child
comment nodes. Therefore, a tree structure for modeling a
comment thread is defined as a comment node set {N |N =
〈id, parent, children, attributes〉}, where:
• N.id denotes the global unique identifier of N ;
• N.parent denotes the parent comment node of N ;
• N.children denotes the child comment node list of N ;
• N.attributes denotes the attributes of N , which is a set of

name-value pairs.

Various comment operations are supported by different com-
menting systems, and typical comment operations include
Post (post or reply a comment), Edit (edit the comment con-
tent), Delete (delete an existing comment), Like (like a com-
ment by another user) etc.. For general purpose, four primi-
tive operations on the tree structure are defined as follows:
• Append (parentId, id, attributes): Create a new comment

node with id and attributes, and add it to the end of the
child node list of the parent node indicated by parentId.
• InsertBefore (parentId, refId, id, attributes): Create a new

comment node with id and attributes, and insert it before
the existing child node indicated by refId in the child node
list of the parent node indicated by parentId.
• Delete (id): Delete the comment node indicated by id.
• Update (id, name, value): Update the attribute indicated by
name of the comment indicated by id with the value.

The structural operations Append, InsertBefore and Delete
can support adding or deleting a node at any position in a
tree structure. The Update operation can be used to change
the content of a comment. Note that the comment content
represented as a set of attributes is application-specific. In
a commenting system, in general, a comment has two types
of attributes: string-valued attribute (e.g. author name, con-
tent) and numerical attribute (e.g. the number of likes). The
string-valued attributes are commonly not allowed to be mod-
ified (e.g. the author’s name) or only allowed to be modified
by the comment’s author (e.g. the comment’s content). The
numerical attributes are allowed to be updated by any user in
an incremental manner, e.g. the value of ‘likes’ of the com-
ment ‘A’ will be increased by 1 after the operation Update(A,
‘likes’, 1) is executed. Each comment node is associated with

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

532

T

A B

D

G H

E

I

J K

F

C

S = {C,F}
R = {}
Q = {T,B,C, F}
R′ = {T,B,C, F}

T

A B

D E F

C

S = {B,C,H}
R = {T,B,C, F}
Q = {T,B,C,D,H}
R′ = {T,B,C,D, F,H}

T

A B

D

G H

E F

C

(a) (b) (c)

comment node skeleton parent node skeleton leaf node

Figure 2. An example comment tree structure and the incremental up-
date of the partial replica. (a) The example comment tree structure. (b)
The replica after comments C and F are fetched for the user. (c) The
updated replica after comments B, C and H are fetched.

a history buffer which logs the operations that have been ex-
ecuted on this node.

3.2 Primary Copy and Partial Replicas
Figure 2 (a) shows the tree structure of an example comment
thread. It is stored as a primary copy at the server side. Users
may want only a specific set of comments when they partic-
ipate in the online discussion, and the required comments,
for example the comments C and F, may be distributed with-
in the tree structure arbitrarily. It does not make sense for
a comment thread to only replicate and store the required n-
odes on the client independently. The relationships between
the replicated nodes must be preserved and consistent with
those in the primary copy, including the parent-child and sib-
ling relationships.

To preserve the relationships between the replicated nodes,
the rule “If a comment node is replicated, its parent node (if
any) must also be replicated” is applied when replicating a
subset of a comment tree structure. In this way, it is easy to
show that all replicated nodes can be organized in a single
rooted tree structure on the client, and the parent-child rela-
tionships are naturally preserved. As shown in Figure 2 (b),
when comment nodes C and F are required to be replicated,
their parent nodes B and T (which is also B’s parent node)
are replicated on the client as well. The tree structure of the
partial replica is called skeleton tree in our approach, and the
parent nodes replicated to form the skeleton tree, e.g. B and
T, are called skeleton parent nodes.

When a node is replicated, the history operations logged in it-
s history buffer will be transferred to the client and executed.
As shown in Figure 2 (b), the skeleton leaf nodes A, D and E
are also generated in the skeleton tree after executing histo-
ry operations logged in T and B, respectively. The skeleton
leaf nodes are not explicitly required to be replicated on the
client, however, they are important for maintaining consistent
sibling relationships across replicas. The underlying consis-
tency maintenance technique will be elaborated in Section 5.
It should be pointed out that, to save the bandwidth of mo-
bile users, all skeleton nodes, including the skeleton parent

and skeleton leaf nodes, are maintained in the skeleton tree
without content data (i.e. the nodes’ attributes).

3.3 Incremental Construction of Partial Replicas
When a user starts to participate in an online discussion, the
first FETCH request will be sent to the server to fetch the
specific comments wanted by the user. The initial skeleton
tree can be constructed from top to bottom by executing the
operations returned to the client. When subsequent FETCH
requests are sent to refresh the current replica or fetch addi-
tional comments for the user, some of the required nodes may
exist in the client replica. To save the bandwidth of mobile
users, the client replica should be updated incrementally. In
other words, only incremental operations should be returned
by the server to update the skeleton tree of the partial replica.

To determine which nodes should be replicated and how to
respond to a FETCH request in an incremental manner, the
server maintains a replica metadata for each replica to track
the replica’s state. It records which nodes have been repli-
cated and their replication types in the skeleton tree. CN and
SN denote the replicated comment node and skeleton parent
node, respectively.

Algorithm 1 Fetch(R,Request) : Response

1: Response ← Sync(R,Request)
2: S ← comments specified by Request .query
3: Q← required nodes for replicating nodes in S
4: for each N ∈ Q do
5: Determine what data should be returned to the client

forN according toN ’s replication type, and updateR
and Response.

6: end for
7: return Response

Given the replica metadata R, Algorithm 1 specifies the pro-
cedure of responding to a FETCH request which consists of a
comment query and unsubmitted client operations before the
request. The server first calls Algorithm Sync, which is elab-
orated in next section, to execute the client’s local operations
within the request (line 1), and then performs the query on
the latest primary copy to get the comment set S wanted by
the client (line 2). For example, S = {B,C,H} in Figure 2
(c) indicates that the comments B, C, and H are required by
the client. According to the replication rule described above,
the nodes that should be replicated are identified and stored in
Q = {T,B,C,D,H} (line 3). The set Q can be calculated
by including all nodes on the paths from the root to the nodes
in S (e.g. Q = {T,B} ∪ {T,C} ∪ {T,B,D,H}).
Because some of nodes in Q may have existed in the client’s
replica, the server determines what data should be returned
for each node N ∈ Q according to their replication types as
follows (line 4-6):
• Case 1: N 6∈R∧N 6∈S. N will be replicated as a new skele-

ton parent node, e.g. D in Figure 2 (c), so only the history
operations onN will be returned to construct its child node
list. Update operations and attributes fields of Append and
InsertBefore operations will be excluded. N ’s replication
type is set as SN.

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

533

• Case 2: N 6∈R∧N∈S. N will be replicated as a new com-
ment node, e.g. H. Similarly with Case 1, history oper-
ations on N will be returned. In addition, N ’s attributes
will returned as well. N ’s replication type is set as CN.
• Case 3: N∈R ∧N 6∈S. N has existed in the replica and is

not wanted by the user, e.g. T, so nothing needs to be done.
• Case 4: N∈R∧N∈S. IfN is currently replicated as skele-

ton parent node, e.g. B, N ’s attributes will be returned to
the client and its replication type will be changed from SN
to CN, otherwise nothing needs to be done for N , e.g. C.

Note that Algorithm Sync is called at line 1 to update the pri-
mary copy and identify incremental remote operations for the
replicated nodes. So actually, for N ∈ R in Case 3 and 4, in-
cremental operations onN (if any) will also be returned to the
client. This can be considered as the synchronization of the
two corresponding nodes between the client and the server,
and it will be elaborated in next section.

When the client receives the response returned from the serv-
er, it first executes the incremental operations within the re-
sponse to update the structure of the skeleton tree, and then
sets the attributes fields of the nodes whose contents are also
returned along with the operations.

4. PARTIAL REPLICA SYNCHRONIZATION
In this section, we introduce how replicated nodes are syn-
chronized with their corresponding nodes on the server. A
batch of local operations, which are executed since the last
synchronization with the server, are incrementally submitted
using a single SYNC message. Then the server applies all
received operations on the primary copy. After that, remote
operations which are concurrent with the submitted opera-
tions are identified and returned to update current client’s lo-
cal replica.

4.1 Concurrent Operation Detection
In a typical commenting system, a server may serve thou-
sands of online users at the same time, and users may join
and leave a discussion dynamically. Therefore, the concur-
rent operation detection method must be efficient enough. In
this section, a concurrent operation detection method with
log(n) time complexity is presented, where n is the length
of a node’s operation history buffer.

On the server side, the received operation sequences will be
stored in the sequence history buffers (SHB) of correspond-
ing nodes in the order of execution time. On the client side,
an operation sequence that has been synchronized with the
server is stored in the SHB of the corresponding node, and
operations that have not been submitted to server are stored
in the local history buffer (LHB). Each sequence Si in the
history buffer is a tuple 〈R, T, T ′, L〉, where:
• Si.R denotes the replica on which Si was generated;
• Si.L denotes the list of operations constituting Si;
• Si.T denotes the finish time of executing Si on server;
• Si.T

′ denotes the finish time of Si.R’s last synchronization
with the server.

Here Si.T and Si.T
′ are global scalar timestamps, which

can be realized by real time or logic time on the server.
Some existing centralized collaborative systems adopt two-
dimensional timestamp, one dimension is for the client, the
other is for the server. For example, Jupiter [13] uses two-
dimensional timestamps to transform concurrent operations
in the transformation state space. However, Jupiter assumes
the shared object is fully replicated. If the shared objec-
t is partially replicated on individual clients, two-dimensional
timestamps generated in local partial states are not compara-
ble globally.

For any sequence S in the SHB of a comment node N , S is
generated after S.T ′. When S is generated on the replica S.R,
all sequences before S.T ′ must have been executed on S.R,
and no sequence after S.T ′ is returned and executed on S.R.
Sequences generated on the same local replica are submitted
and executed on the primary copy in their generating orders.
Therefore, given two sequences Si and Sj in the SHB of a
node N , where 0 ≤ i ≤ j < |N.SHB|, one of the following
relations is hold between Si and Sj :
• casually-before: Si → Sj . Si happens before Sj if Si.T <
Sj .T

′ or Si.R = Sj .R;
• concurrent: Si q Sj . Si is concurrent with Sj if Si.T >
Sj .T

′ and Si.R 6= Sj .R.

Since operations in a sequence are ordered by their generating
times, the relations between two operations can also be spec-
ified as following: Given two operations O1 and O2, where
O1 ∈ Si.L and O2 ∈ Sj .L,
• O1 → O2: O1 happens before O2 if Si → Sj or Si = Sj

and O1 is before O2 in Si.L.
• O1 q O2: O1 is concurrent with O2 if Si q Sj .

Given an operation sequence, concurrent operation sequences
are those whose execution times T are greater than S.T ′ ex-
cept for those from S.R, where T ′ is the time of the last syn-
chronization time of an operation sequence S. Because op-
eration sequences are ordered by their execution times T in
the SHB of a node, a binary search can be performed on the
SHB to identify all concurrent sequences that have not been
executed on the replica.

4.2 Partial Replica Synchronization
A synchronization process can be started manually, triggered
periodically, or triggered automatically when the mobile de-
vice is reconnected. Figure 3 illustrates two synchronization
processes between a client and the server.

When the local operation sequence Sj is ready to be submit-
ted to the server at the state (1), i sequences (i.e. S0..i−1
in N.SHB) have been synchronized with the server. The se-
quence Sj was generated after the client’s last synchroniza-
tion with the server, and the finish time T1 of the last syn-
chronization will also be submitted to the server with Sj to
identify concurrent remote operation sequences.

After the SYNC request is received from the client at the state
(2), j sequences (i.e. S0..j−1 in N.SHB shown in Figure 3)
have been received and executed on the primary copy. The
server first identifies the concurrent sequences after Sj .T

′ =

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

534

Client Server
Sj〈T

′ = T1〉

Si..j−1

T2

Sk〈T
′ = T1〉

Sk+1〈T
′ = T2〉

Sj+1..k−1

T3

(1) (2)

(4) (3)

(6) (7)

(8)

S0..i−1 Si..j−1

S0..i−1 Si..j−1 Sj

S0..i−1 Si..j−1 Sj Sj+1..k−1

S0..i−1 Si..j−1 Sj Sj+1..k−1 Sk Sk+1

T1 T2 T3

Figure 3. Illustration of two synchronization processes between a client
and the server.

State SHB LHB
(1) S0..i−1 Sj〈T ′ = T1〉
(4) S0..i−1 Sj〈T ′ = T1〉, Sk〈T ′ =?〉
(5) S0..j Sk〈T ′ = T1〉
(6) S0..j Sk〈T ′ = T1〉, Sk+1〈T ′ = T2〉

Table 1. The SHB and LHB on the client shown in Figure 3.

T1 for Sj , i.e. sequences Si..j−1. After executing operations
in Sj and adding it intoN.SHB at time T2 (shown as state(3)),
the server returns the concurrent sequences Si..j−1 and T2 to
the client.

During the synchronization, i.e. before responded by the
server, local operations on the client replica are still allowed
to be executed for high local responsiveness. For example at
the state (4), besides the sequence Sj that is submitted to the
server, the local operations generated during the synchroniza-
tion are stored in the sequence Sk in N.LHB. After receiving
the SYNC response, the client first executes remote operation
sequences on N ; then moves Sj into N.SHB and sets Sk.T

′

for the next synchronization (shown as state (5)). It is worth
to note that, Sk.T

′ is set to Sj .T
′ = T1 rather than the fin-

ish time T2 of the current synchronization. This is because
the operations in Sk are executed on the replica which have
not integrated the operations in Si..j−1, therefore, when Sk

is submitted to the server in the next synchronization, Si..j−1
must be identified as concurrent remote sequences for cor-
rectly executing Sk on the primary copy.

For the operations executed locally after the synchronization,
i.e. Sk+1 in N.LHB at state (6), they are generated after
Si..j−1 and Sj have been executed on the replica, so when
it is submitted to the server, T2 will be used to identify it-
s concurrent remote sequences Sj+1..K−1 at the state (7) on
the server. It is easy to show that, in a SYNC request, there are
at most two local sequences for a node to be submitted to the
server. After executed on the server, Sk and Sk+1 submitted
by the client are sequentially added into N.SHB (as shown in
state (8)). The finish time T3 of the synchronization and the
concurrent sequences Sj+1..K−1 after T2 are returned to the
client.

Given the replica metadata R of the client from which the
SYNC request is received, Algorithm 2 specifies the proce-
dure of responding to a synchronization request. The server
first executes the submitted operations for each nodeN in the
request (lines 1-9) to update the primary copy. For each oper-

Algorithm 2 Sync(R,Request) : Response

1: for each N ∈ Request do
2: for each operations sequence S of N do
3: CSL← {S′|S′∈N .SHB ∧ S′qS}
4: S.T ← now
5: NL← Execute(N ,S ,CSL)
6: Append S into N.SHB .
7: Add nodes in NL into R as CN.
8: end for
9: end for

10: Response← []
11: for each N ∈ R do
12: CSL← {S′|S′∈N.SHB ∧ S′.T>R.T ′ ∧ S.R 6=R}
13: Add CSL into Response for N. Update operations are

excluded if N is replicated as a skeleton parent node.
14: end for
15: Response.T ′ ← R.T ′ ← now
16: return Response

ation sequence S of N , the concurrent operations in N .SHB
are identified (line 3), and then Algorithm Execute is called
to execute the operations in S (line 5). An underlying consis-
tency maintenance technique, which will be presented in next
section, is used in Execute to maintain the consistent sibling
relationships across replicas and resolve operation conflicts
automatically. S is appended into the node’s history buffer
after the operations in it are executed (line 6). Note Algorith-
m Execute returns a list of comment nodes which are created
on the client. These nodes should be added into the repli-
ca metadata R as the replication type CN (line 7). After all
submitted operations are executed on the primary copy, con-
current operation sequences are identified for each nodes in
the replica and added into the response (lines 11-14). How-
ever, for nodes that are replicated on the client as skeleton
parent node, Update operations on them are excluded. Final-
ly, the finish time of this synchronization process is set for the
replica metadata and the response (line 15).

When the client receives the response returned from the serv-
er, it first executes the remote operations within the response
to update the replica. Similarly with the operation execu-
tion on the server side, Algorithm Execute will be called for
consistency maintenance and conflict resolution. However, it
should be noted that, besides concurrent operations in a n-
ode’s SHB, all operations in the node’s LHB (if any) are also
concurrent with the returned remote operations targeting the
same node. After the remote operation are executed, the last
synchronization time will be set for operation sequences in
LHB , and the submitted sequences will be moved from LHB
to SHB.

5. CONSISTENCY MAINTENANCE
For high local responsiveness, the shared comment thread is
replicated on clients and operations are allowed to be concur-
rently performed on any part of the local replicas. When a
local operation is submitted to the server or a remote oper-
ation is returned to the client, the state of the tree structure
may be different from the state in which the operation was

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

535

Algorithm 3 Execute(N , S, CSL):L
1: for each o ∈ CSL do
2: Exclude o’s effect on its affected node.
3: end for
4: L← []
5: for each o ∈ S do
6: Execute o on the node N .
7: Put o’s affected node into L if o is an Append or an

InsertBefore operation.
8: end for
9: for each o ∈ CSL do

10: Restore o’s effect on its affected node.
11: end for
12: return L

generated. Naively applying concurrent operations will lead
to inconsistent data replica even corrupt data replicas.

In this section, an AST (Address Space Transformation)
based consistency maintenance technique designed for par-
tial replication architecture is elaborated. Note that we only
focus on maintaining the syntactic not semantic consistency
(e.g. a user posts a same comment twice in a short time or
deliberately posts the answer before the question). The se-
mantic inconsistency issues usually cannot be resolved solely
by technical approaches without human interventions.

5.1 AST Basis
AST is originally proposed in [7] for collaborative editing
of linear character documents. It ensures that the order of
linear character nodes is consistent across all replicas after
the same group of operations are executed at all collaborative
sites. One of the most important advantages of AST is that a
remote operation can be directly executed in its original for-
m, as long as the address space on which this operation was
generated exists and all concurrent operations’ effects are ex-
cluded.

To ensure a remote operation can be correctly executed, AST
transforms the address space (i.e. the comment tree struc-
ture) to the state at which the operation was generated. This
is realized by excluding the execution effects of all concur-
rent operations. The effects of concurrent operations will be
restored after the remote operation is executed. In order to
achieve the address space transformation, AST logs all his-
tory operations and marks deleted nodes as ineffective rather
than really removing them from the address space.

In AST [7, 25], history operations are associated with their
target nodes. The address space transformation is achieved
by the Retracing procedure [7], which visits all the nodes and
determines their effective/ineffective marks to exclude or re-
store the effects of concurrent operations. However, it is not
applicable for partial replication of the tree structure, since a
node may not exist in a partial replica.

5.2 Adapting AST for Partial Replication
We have two observations on address space transformation.
One is that a concurrent operation does not need to be con-
sidered in an address space transformation, if it has no effect

on the execution of a remote operation, i.e. there is no conflict
between the two operations. Another one is that the essence
of address space transformation is to exclude or restore the
execution effects of conflict concurrent operations, and it is
unnecessary to traverse all the nodes as long as all conflic-
t concurrent operations can be identified. By reviewing the
tree structure and its primitive operations, we note that the
conflicts of concurrent operations are confined to a node and
its children, since the nodes are addressed by global identi-
fiers. Specifically, for concurrent Append, InsertBefore and
Delete operations, conflicts can be caused only when their
target nodes share the same parent node. The Update opera-
tions only affect the content of comment nodes and have no
effects on the structure of the comment thread, so they do not
conflict with the other types of operations.

Therefore, to adapt AST for partial replication of the tree
structure, history operations logged in their affected nodes
are moved to the history buffer of the parent nodes. Each
node maintains an effectiveness counter. When a node is cre-
ated by an Append or InsertBefore operation, its effectiveness
counter is initialized to 1. If a Delete operation is executed on
the node, its effectiveness counter is decreased by 1. A node
is effective if and only if its effectiveness counter equals 1. To
execute a remote operation, after the concurrent operations
are identified, the address space is transformed by directly
manipulating the effectiveness counters of the concurrent op-
erations’ affected nodes. The partial replication mechanism
(in Section 3) and the synchronization protocol (in Section 4)
ensure all conflict concurrent operations that may lead to con-
flicts can be efficiently identified for executing a remote op-
eration.

Given the sequence list of concurrent operations CSL, Algo-
rithm 3 specifies the procedure of executing a remote oper-
ation sequence S on the node N . Since the operations in S
are sequentially generated on their corresponding local repli-
cas, they can be correctly executed in order (lines 5-8) after
the effects of concurrent operations are excluded (lines 1-3).
Concurrent operations’ effects are restored (lines 9-11) after
the remote operations are executed. The algorithm Execute
returns a list of nodes which are created by Append and In-
sertBefore operations.

The Delete operation can be executed directly by decreas-
ing the effectiveness counter of its affected node by 1. The
Append and the InsertBefore operations can be executed by
inserting a new node between two reference nodes. Due to
concurrent insert operations and preceding delete operations,
there may exist ineffective nodes between the two reference
nodes. The procedure RangeScan [7] will be called to insert
the new node at the correct position in the range of ineffec-
tive nodes and ensure a consistent sibling node order across
all replicas.

Figure 4 illustrates the operation execution and conflict reso-
lution. The node N as well as its children A and B are repli-
cated on both client 1 and 2. N ’s initial states (Figure 4(b))
on the server, client 1 and client 2 are identical to each other.
The server receives O1 and O2 from client 1, followed by O3

from client 2 (Figure 4(a)). O1 inserts X before B, and then

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

536

A

N

B
ec=1 ec=1

A X B

N

ec=1 ec=1 ec=0

A X B

N

ec=1 ec=0 ec=1
A X Y B

N

ec=1 ec=0 ec=1 ec=1
A X Y B

N

ec=1 ec=1 ec=1 ec=0

(c) execute O1, O2 (b) N’s initial state (a)

(d) exclude effects
of O1,O2

(e) execute O3 (f) restore effects
of O1,O2

server client 1 client 2

O
1,O

2

O 3

Figure 4. Examples of operation execution and conflict resolution.
O1=InsertBefore(N,B,X), O2=Delete(B) and O3=InsertBefore(N,B,Y). ec
is short for effectiveness counter.

O2 deletes B by decreasing B’s effectiveness counter by 1
(Figure 4(c)).

O3’s execution is slightly different, because it is concurrent
and conflict4 with O1 and O2. Before executing O3, effects
of O1 and O2 must be excluded by decreasing X’s effective-
ness counter by 1 and increasing B’s effectiveness counter
by 1, respectively (Figure 4(d)). Y , which is intended to be
inserted before B (i.e. between A and B), is inserted after
the ineffective node X (Figure 4(e)) by calling the procedure
RangeScan. O1 and O2’s effects are restored after O3’s exe-
cution (Figure 4(f)). After concurrent operations O1 and O2

are returned to and executed on the client 2, N ’s state on the
client 2 will be consistent with the one shown in Figure 4(f).

For two Update operations targeting the same attribute of a
node, if the attribute is numerical, they do not conflict with
each other since the target attribute is incrementally updated;
otherwise, due to the attribute is only allowed to be updated
by the comment’s author, the conflict can be automatically
resolved in a “Last-Write-Win” manner. Specifically, the ex-
ecution of an Update operation is different between the server
and the client. On the server side, an Update operation can
be directly executed; while on the client side, a remote Up-
date operation will be discarded if it targets a string-valued
attribute which has been updated by an unsubmitted local op-
eration.

Operations can be executed in linear time. Since an opera-
tion’s effect can be excluded or restored by manipulating the
affected node’s effectiveness counter in constant time, the ad-
dress space transformation can be done inO(k) time, where k
is the number of concurrent operations in CSL. Primitive op-
erations can also be executed in constant time. So, Execute’s
time complexity is O(k + |S|).

6. EVALUATION
We have implemented a system prototype called Hydra and
have evaluated it using the real comment data crawled from
4B has been concurrently deleted by O1, and a new node X has
been concurrently inserted between A and B by O2.

Disqus, which is a popular 3rd party commenting system used
by CNN, FoxNews, Time, and Engadget etc. First, we ana-
lyze the characteristics of the Disqus comment data. Then,
we present the experimental evaluation results.

6.1 Analysis of Disqus Comment Threads
We collected 32,289 comment threads with 8,612,658 com-
ments from Disqus. Disqus lists the latest articles from the
web content providers in its Explore Page 5. We use those
article URLs to crawl the articles and their comment thread-
s. These comment threads can be constructed as tree struc-
tures in 3.3 seconds, 0.1 milliseconds per thread on average.
Figure 5 shows the distribution of the comment thread size.
About 25% of the threads consists of less than 10 comments,
and 10% of the threads consists of more than 500 comments.
On average, a comment thread consists of 267 comments con-
tributed by 115 users. The largest thread consists of 30,232
comments, and the most popular comment conversation at-
tracts 28,652 users. This suggests Hydra has to scale to a
large comment thread size and a large number of participants.

In the crawled dataset, each user posted 2.32 comments on
average. And the most active user posted 850 comments in
a single comment thread. We examined the user interactions
in the collected comment threads, and considered a reply to
another user as an interaction between the two users. About
49% of users read and replied to other users’ comments. Only
40% of comments were directly posted to the original web
content, while 60% were replied to others’ comments. These
observations suggest user interactions accounted for a large
proportion of comment threads.

6.2 Evaluation of Hydra
We implemented a system prototype called Hydra and a base-
line commenting system to evaluate our approach.
• Client side response time was measured to evaluate the lo-

cal responsiveness in real mobile environments.
• Network bandwidth usage was measured to evaluate the

efficiency of partial replication approach.
• The server side response time and throughput were mea-

sured to evaluate the system scalability.

Experiment setup
Both the baseline system and Hydra were implemented as
web-based commenting systems. For Java servlets were im-
plemented in the baseline server to process comment fetch-
ing, posting, editing and deleting requests from clients. The
partial replication algorithms were implemented in Hydra
serve to process FETCH and SYNC requests from clients.
They were deployed in the same Apache Tomcat server run-
ning on a virtual machine with four 2.8 GHz X5600 CPUs,
16G main memory. The operating system is Windows Server
2008 R2.

The evaluation experiments were conducted on the real data
set crawled from Disqus. Users commenting behaviors in the

5http://disqus.com/explore/

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

537

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

%
 o

f t
hr

ea
ds

 (C
D

F)

Comment thread size

(10,0.248)

(500,0.898)

Figure 5. Comment thread size distribution.

HanDan

FengLin ZhangJiang

≤ 400ms
≤ 800ms
> 800ms

Disconnected

Figure 6. Mobile network RTTs between
7:00 a.m. to 9:00 a.m. in Shanghai.

HanDan

FengLin ZhangJiang

≤ 400ms
≤ 800ms
> 800ms

Disconnected

Figure 7. Mobile network RTTs between
12:30 p.m. to 2:30 p.m. in Shanghai.

data were simulated in the chronological order of the com-
ments to generate the client commenting requests. A central-
ized monitor program was implemented to schedule the com-
menting clients. Before posting, deleting or editing a com-
ment, the comments depended on by current operation must
be fetched first if they did not exist on the client. Since com-
ment deletion and update information cannot be obtained and
inferred lexically from the crawled data set, these operations
were generated and randomly distributed among comment in-
sertion operations to validate the correctness of operation ex-
ecutions. Users’ commenting operations in Hydra were ex-
ecuted immediately on the local replica, while users’ opera-
tions in the baseline system can only be executed after they
were responded by the remote server. The simulation exper-
iment was repeated four times to measure the local respon-
siveness, network bandwidth usage of mobile clients, and the
server side performance.

Local responsiveness
Local responsiveness was measured in real mobile environ-
ments. We repeated the experiment twice at different time in
a day. They were conducted on school buses between three
campuses of Fudan university (i.e. HanDan campus, FengLin
campus and ZhangJiang campus shown in Figure 6 and 7).
The baseline client and Hydra client were run on a laptop
which was connected to China Unicom’s 3G mobile network
via a laptop connect card. Meanwhile, we also implemented
an Android application to record the locations and the round
trip time (RTT) of the mobile network.

As expected, the mobile network was intermittent in the ex-
periments. And we observed that the mobile network signal
strength had no significant differences at different location-
s in Shanghai, but changed significantly with the change of
time. The network RTTs were marked at different locations
on the maps shown in Figure 6 and 7. Figure 8 shows the av-
erage local response time under different network conditions
for Hydra client and the baseline client. Local response time
of Hydra client is consistently close to zero. It means Hy-
dra can provide high local responsiveness for users anywhere
anytime. However, local response time of the baseline client
increases with larger network RTT, and it can reach tens of
seconds in the experiment.

Bandwidth saving
To save the bandwidth of mobile users, the structure of a com-
ment thread is partially replicated on the client; the comment

content is replicated if and only if it is explicitly required by
a user. The bandwidth usage of each Hydra client can be cal-
culated using the following formula:

BH = bc·C + bo·R (1)

where C is the number of comments required by a user; R
is the number of nodes in the skeleton tree of a replica; bc
is the average comment size in bytes; and bo is the average
commenting operation size in bytes.

Existing collaborative editing techniques (such as OT and
AST) can also be used to achieve high local responsiveness if
the shared comment thread is fully replicated, we compared
Hydra client’s bandwidth usage with the following two full
replication schemes:
• Full-Structure-Partial-Content (F1): the structure of a

comment thread is fully replicated, but the comment con-
tent is replicated if and only if it is explicitly required by
the user.
• Full-Structure-All-Content (F2): the full structure of a

comment thread and its content are both replicated on the
client.

Similarly, the bandwidth usage of the clients adopting the full
replication schemes F1 and F2 can be calculated using the
following two formulas respectively:

BF1
= bc·C + bo·P (2)

BF2
= bc·P + bo·P (3)

where P is the number of comments in a comment thread.
Therefore, compared with the two full replication schemes,
the percentage of bandwidth saved by Hydra are:

δF1 =
BF1 −BH

BF1

=
P −R
P + α·C

=
1− R

P

1 + α·CP
(4)

δF2
=
BF2 −BH

BF2

= 1− R+ α·C
P + α·P

= 1−
R
P + α·CP

1 + α
(5)

where α = bc
bo

and it equals 4.9 in the prototype implementa-
tion. We can see that the percentage of bandwidth saved by
Hydra is the function of two ratios: C

P and R
P . The ratio C

P
denotes the percentage of the comments required by a user,
and the ratio R

P denotes to what extend the comment thread is
partially replicated.

In the experiment, for comment threads that consist of more
than 50 comments, the average percentages of bandwidth

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

538

 0

 2

 4

 6

 8

 10

 12

 2000 4000 6000 8000

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Network RTT (milli-seconds)

Baseline
Hydra

Figure 8. Response times of Hydra and Baseline
clients with different network RTTs.

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

%
 o

f b
an

dw
id

th

 s
av

ed
 b

y
H

yd
ra

R / P

(0.17,68%)

(0.17,94%)

δF1δF2

Figure 9. Average percentage of bandwidth
saved by Hydra for different replication ratios.

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8 9 10 11 12 13

B
an

dw
id

th
 u

sa
ge

 (K
B

)

Replica

BHBF1BF2

Figure 10. Bandwidth usage comparison of Hy-
dra, F1 and F2 clients in an example comment
thread.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5000 10000 15000A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

Comment thread size

FETCH response time
Trend line

Figure 11. FETCH response time to the primary
copy size.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

History buffer size

SYNC response time
Trend line

Figure 12. SYNC response time to the number of
history operations in SHB on server.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4

of

 re
qu

es
ts

 p
er

 s
ec

on
d

of CPUs

1082.49

2294.85
3164.18

4701.80

Figure 13. Hydra server throughput when con-
figured different number of single-core CPUs.

saved by Hydra δ̄F1
and δ̄F2

were 15.6% and 69.8%, respec-
tively. Figure 9 shows δ̄F1

and δ̄F2
for different replication

ratios R
P . Compared with F1, the smaller the replication ra-

tio is, the more bandwidth Hydra saves. Compared with F2,
the bandwidth percentage saved by Hydra first decreases and
then increases with the increase of the replication ratio. This
is because, for large and flat comment threads, the replica size
is close to the size of the whole thread even if only a smal-
l portion of comments are required by a user. Therefore, in
the case where R

P is close 1 and C
P is very small, Hydra can

save considerable bandwidth for users compared with F2.

The minimum of the replication ratios equals 0.17 in the ex-
periment. The corresponding comment thread contained 573
comments and 13 users’ replicas. Figure 10 compares the
bandwidth usage of Hydra, F1 and F2 clients for each user’s
replica in this comment thread. We can see that the band-
width usage on the Hydra client is much less than that on F1

and F2 clients. For example, the F1 and F2 clients consumed
86KB and 471KB of user#13’s bandwidth respectively, while
the Hydra client only consumed 38KB.

Server side performance
The server side response time and throughput were measured
to evaluate the system scalability. Figure 11 and 12 show the
execution times of processing FETCH and SYNC requests,
respectively. They are less than 0.25 milliseconds in the ex-
periment, which are negligible compared with the network la-
tency. In addition, the execution times of processing FETCH
and SYNC requests increase linearly with the growth of the
comment thread size and the history buffer size, respectively.

Four pressure tests were performed to measure the through-
put of Hydra server. The Hydra server was configured with 1,

2, 3, 4 single-core CPUs, respectively. And it was running at
100% CPU usage using excessive commenting requests. Fig-
ure 13 shows the throughput under different CPU configura-
tions. The Hydra server throughput is around 1000 requests
per second per core on average, and it scales linearly with the
number of CPU cores.

7. RELATED WORK AND DISCUSSION
Replication is widely adopted to offer high availability in dis-
tributed systems, such as [14, 17, 19]. As an importan-
t category of interactive systems, group editors [6, 23] ful-
ly replicate the shared document at all clients for high lo-
cal responsiveness using optimistic concurrency control ap-
proaches such as OT (Operation Transformation) [6, 23] and
AST (Address Space Transformation) [7]. Over the past two
decades, a lot of work has been done for collaborative edit-
ing in fully replicated architecture to maintain consistency of
replicas and automatically resolve conflicts in P2P architec-
ture [6, 23, 11, 7, 15], client-server architecture [13, 21], mo-
bile environment [20, 22], tree structure of document [5, 8,
25], etc..

However, as analyzed previously, full replication is usually
not adopted under a bandwidth-minded environment, such as
on mobile devices. To mitigate the problems caused by in-
termittent connection, online contents are usually prefetched
and cached [4, 9] for local responsiveness of content retrieval.
The cached content is actually a portion of the whole content,
however, they are usually static where no concurrently edit-
ing is allowed. Prefetching and cache technologies can be
leveraged to decide when and what content to fetch for com-
ment retrieval and our approach can be adopted to maintain

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

539

the replicated data and ensure high responsiveness of local
operations.

Both OT and AST are potentially promising approaches that
can be adapted for partial replication. But to the best of our
knowledge, this is the first work proposing a complete solu-
tion to applying collaborative editing techniques for partial
replication of comment threads. Although AST is used as
the underlying consistency maintenance technique in our ap-
proach, actually, the partial replication scheme and the syn-
chronization protocol can also be integrated with OT. More
specifically, they can ensure right and enough information ex-
changed between client and server, so that a transformation
can be conducted for a remote operation to be executed in a
“right” address space (for AST) or in a “right” form (for OT).
However, the primitive operations with global identifiers for
AST, which enables efficient target nodes addressing, need to
be redefined using positional parameters for OT-based partial
replication.

Sync [12] is a Java framework for developing mobile collabo-
rative applications, which allows developers to implement the
merge matrix to resolve the conflicts in different applications.
The main contribution of this paper is a partial replication ap-
proach, which has not been addressed in the Sync framework.

Docx2Go [16] is a framework for collaborative editing of
XML-based documents on mobile devices, which is the
most related work to ours from some technical perspectives.
In terms of working on mobile devices anywhere anytime,
our system design goal resembles that of Docx2Go. Both
Docx2Go and our approach adopt partial replication to ac-
commodate mobile devices. The major differences between
our approach and Docx2Go are synchronization mechanisms,
conflict resolution and consistency maintenance methods. In
Docx2Go, replicas are synchronized by exchanging data of
element while operations are exchanged in our system. Due
to the difference in manipulated elements and structure, the
conflicts in Docx2Go are manually or automatically resolved
by merging two conflict versions of an element, but conflicts
of tree structure manipulation will be resolved automatically
in our system. For consistency maintenance, Docx2Go us-
es position indicator [24, 15] to determine a consistent order
of sibling nodes, but its unbounded position indicator and ver-
sion vector are not suitable for Internet-scale commenting and
mobile device with limited resources. Our scalar timestamp
based concurrent operation detection and efficient operation
integration on server side can ensure higher scalability.

8. CONCLUSION
To address the technical challenges brought by mobile net-
works, we contribute a novel partial replication approach to
address the responsiveness and consistency maintenance is-
sues for anywhere anytime mobile commenting. The main
technical contributions are threefold: 1) To the best of our
knowledge, it is the first work of applying collaborative edit-
ing techniques to achieve high local responsiveness in mo-
bile commenting; 2) A holistic approach for partial replica-
tion and synchronization of tree-structure comment threads
are proposed; 3) A scalar timestamp based synchronization

protocol is designed to meet the scalability requirements of
commenting systems and users’ dynamic participation.

A prototype system called Hydra was implemented to eval-
uate our approach. The evaluation results show that our ap-
proach is capable of providing high local responsiveness for
users in high-latency networks, save bandwidth of mobile
users compared with full replication approaches. And it has
high efficiency and good scalability for achieving large scale
commenting systems.

Existing commenting systems can leverage our approach to
achieve high local responsiveness in intermittent mobile net-
works and do not need to worry about the issues of repli-
cation, synchronization and data consistency of commen-
t threads. In the future, we will integrate our approach with
existing commenting systems, and conduct user experience s-
tudies to better evaluate our approach from the perspective of
usability.

ACKNOWLEDGMENTS
We thank Silvia Lindtner for her great help with the pa-
per revision. The work was supported by the National
Natural Science Foundation of China (NSFC) under Grants
No.61272533, No.61332008, No.61300201, and Shang-
hai Science & Technology Committee Project under Grant
No.11JC1400800 and No.13ZR1401900.

REFERENCES
1. http://socialmediainasia.blogspot.com/2012/05/

more-than-60-of-sina-weibo-active-users.html.

2. More than talk: Action in mobile marketing.
http://www.hubspot.com/
more-than-talk-action-in-mobile-marketing/.

3. Twitter statistics - updated stats for 2011.
http://www.marketinggum.com/
twitter-statistics-2011-updated-stats/.

4. Billsus, D., Pazzani, M. J., and Chen, J. A learning agent
for wireless news access. In Proceedings of the 5th
international conference on Intelligent user interfaces,
IUI ’00, ACM (New York, NY, USA, 2000), 33–36.

5. Davis, A. H., Sun, C., and Lu, J. Generalizing
operational transformation to the standard general
markup language. In Proceedings of the 2002 ACM
conference on Computer supported cooperative work,
CSCW ’02, ACM (New York, NY, USA, 2002), 58–67.

6. Ellis, C. A., and Gibbs, S. J. Concurrency control in
groupware systems. In SIGMOD ’89: Proceedings of
the 1989 ACM SIGMOD international conference on
Management of data, ACM (New York, NY, USA,
1989), 399–407.

7. Gu, N., Yang, J., and Zhang, Q. Consistency
maintenance based on the mark & retrace technique in
groupware systems. In Proceedings of ACM GROUP’05
Conference on Supporting Group Work (Nov. 2005),
264–273.

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

540

http://socialmediainasia.blogspot.com/2012/05/more-than-60-of-sina-weibo-active-users.html
http://socialmediainasia.blogspot.com/2012/05/more-than-60-of-sina-weibo-active-users.html
http://www.hubspot.com/more-than-talk-action-in-mobile-marketing/
http://www.hubspot.com/more-than-talk-action-in-mobile-marketing/
http://www.marketinggum.com/twitter-statistics-2011-updated-stats/
http://www.marketinggum.com/twitter-statistics-2011-updated-stats/

8. Ignat, C.-L., and Norrie, M. C. Customizable
collaborative editor relying on treeopt algorithm. In
Proceedings of the eighth conference on European
Conference on Computer Supported Cooperative Work,
ECSCW’03, Kluwer Academic Publishers (Norwell,
MA, USA, 2003), 315–334.

9. Jiang, Z., and Kleinrock, L. Web prefetching in a mobile
environment. IEEE Personal Communications 5 (1998),
25–34.

10. Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T.,
Mikkonen, T., and Englund, M. Cored: browser-based
collaborative real-time editor for java web applications.
In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, CSCW ’12,
ACM (New York, NY, USA, 2012), 1307–1316.

11. Li, D., and Li, R. An admissibility-based operational
transformation framework for collaborative editing
systems. Computer Supported Cooperative Work 19, 1
(2010), 1–43.

12. Munson, J. P., and Dewan, P. Sync: a java framework for
mobile collaborative applications. Computer 30, 6
(1997), 59–66.

13. Nichols, D. A., Curtis, P., Dixon, M., and Lamping, J.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In UIST ’95: Proceedings of the
8th annual ACM symposium on User interface and
software technology (Pittsburgh, Pennsylvania, USA,
1995), 111–120.

14. Petersen, K., Spreitzer, M. J., Terry, D. B., Theimer,
M. M., and Demers, A. J. Flexible update propagation
for weakly consistent replication. In SOSP ’97:
Proceedings of the sixteenth ACM symposium on
Operating systems principles (New York, NY, USA,
1997), 288–301.

15. Preguiça, N., Marquès, J. M., Shapiro, M., and Leia, M.
A commutative replicated data type for cooperative
editing. In 29th IEEE International Conference on
Distributed Computing Systems (ICDCS 2009), IEEE
Computer Society (Montreal, Québec, Canada, 2009),
395–403.

16. Puttaswamy, K. P., Marshall, C. C., Ramasubramanian,
V., Stuedi, P., Terry, D. B., and Wobber, T. Docx2go:
collaborative editing of fidelity reduced documents on
mobile devices. In Proceedings of the 8th international
conference on Mobile systems, applications, and
services, MobiSys ’10, ACM (New York, NY, USA,
2010), 345–356.

17. Ramasubramanian, V., Rodeheffer, T. L., Terry, D. B.,
Walraed-Sullivan, M., Wobber, T., Marshall, C. C., and
Vahdat, A. Cimbiosys: a platform for content-based
partial replication. In Proceedings of the 6th USENIX
symposium on Networked systems design and
implementation, NSDI’09, USENIX Association
(Berkeley, CA, USA, 2009), 261–276.

18. Saito, Y., and Shapiro, M. Optimistic replication. ACM
Computing Survey 37, 1 (2005), 42–81.

19. Salmon, B., Schlosser, S. W., Cranor, L. F., and Ganger,
G. R. Perspective: semantic data management for the
home. In Proccedings of the 7th conference on File and
storage technologies, FAST ’09, USENIX Association
(Berkeley, CA, USA, 2009), 167–182.

20. Shao, B., Li, D., and Gu, N. A sequence transformation
algorithm for supporting cooperative work on mobile
devices. In CSCW ’10: Proceedings of the 2010 ACM
conference on Computer supported cooperative work
(Savannah, GA, USA, 2010).

21. Shao, B., Li, D., Lu, T., and Gu, N. An operational
transformation based synchronization protocol for web
2.0 applications. In Proceedings of the ACM 2011
conference on Computer supported cooperative work,
CSCW ’11, ACM (New York, NY, USA, 2011),
563–572.

22. Shen, H., and Reilly, M. Personalized multi-user view
and content synchronization and retrieval in real-time
mobile social software applications. J. Comput. Syst.
Sci. 78, 4 (2012), 1185–1203.

23. Sun, C., and Ellis, C. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In Proceedings of the ACM Conference
on Computer-Supported Cooperative Work (Dec. 1998),
59–68.

24. Weiss, S., Urso, P., and Molli, P. Logoot: A scalable
optimistic replication algorithm for collaborative editing
on p2p networks. In ICDCS, IEEE Computer Society
(2009), 404–412.

25. Yang, J., Wang, H., Gu, N., Liu, Y., Wang, C., and
Zhang, Q. Lock-free consistency control for web 2.0
applications. In WWW (2008), 725–734.

26. Zhao, S., Li, D., Lu, T., and Gu, N. Back to the future: a
hybrid approach to transparent sharing of video games
over the internet in real time. In Proceedings of the ACM
2011 conference on Computer supported cooperative
work, CSCW ’11, ACM (New York, NY, USA, 2011),
187–196.

CSCW 2014 • Concurrency Control February 15-19, 2014, Baltimore, MD, USA

541

	1 Introduction
	2 Overview
	2.1 Approach Sketch
	2.2 Technical Challenges

	3 Partial Replication of Comment Threads
	3.1 Comment Tree Structure and Primitive Operations
	3.2 Primary Copy and Partial Replicas
	3.3 Incremental Construction of Partial Replicas

	4 Partial Replica Synchronization
	4.1 Concurrent Operation Detection
	4.2 Partial Replica Synchronization

	5 Consistency Maintenance
	5.1 AST Basis
	5.2 Adapting AST for Partial Replication

	6 Evaluation
	6.1 Analysis of Disqus Comment Threads
	6.2 Evaluation of Hydra
	Experiment setup
	Local responsiveness
	Bandwidth saving
	Server side performance

	7 Related Work and Discussion
	8 Conclusion
	Acknowledgments
	REFERENCES

