
Distributed Real-Time Knowledge Graph Serving
(Invited Paper)

Liang He†∗, Bin Shao‡, Yatao Li‡, Enhong Chen†
†University of Science and Technology of China, Hefei, China

‡Microsoft Research, Beijing, China
hshl05@mail.ustc.edu.cn, binshao@microsoft.com, yatli@microsoft.com, cheneh@ustc.edu.cn

Abstract—The acquisition of knowledge becomes scalable. Due
to the great connectedness, knowledge data by its very nature
are complex entity graphs with rich schemata. The machine-
processable knowledge keeps its pace with the phenomenal “Big
Data” era. On the one hand, we have a revolutionary way of piling
knowledge up; on the other hand, the technology of making the
knowledge graph accessible, i.e. how to serve the knowledge to
support real-life applications, evolves slowly. This paper presents
our efforts of serving real-world knowledge graphs at scale for
real-time query processing.

I. INTRODUCTION

Semantic web has attracted many attentions from both
academia and industry for many years. Machine-accessible
knowledge is becoming pervasive. To realize the semantic
web vision [1], many standards are proposed for knowledge
management. Among the proposed standards, RDF (Resource
Description Framework) recommendated by W3C is the dom-
inating way of representing knowledge. RDF is simple yet
powerful. An RDF dataset is logically a collection of triples
– 〈subject, predicate, object〉 where subject and object are
resources and predicate is the relationship connecting them.
This representation structure forms a directed labeled graph,
where the nodes represent resources and the edges represent
the named relationships between the resources.

On the one hand, many knowledge repositories are built
either by communities, such as MPI’s Yago [2] and Free-
base [3], or by knowledge extraction from text corpus such as
DBpedia [4], [5], CMU’s NELL [6], IBM’s DeepQA [7], and
Microsoft’s Probase [8]. A large number of knowledge graph
data sets are available thanks to the Linked Open Data [9]
project. This project was started for publishing and interlinking
the knowledge data scattered over the web. Many important
data sets are published under this project, for example, the
DBpedia dataset.

On the other hand, a few RDF stores are proposed to
manage the ever growing knowledge data sets. Most of them
are either RDBMS backed or native stores. And these RDF
stores usually support SPARQL query language. SPARQL is
the de facto query language for RDF data sets. The SPARQL
query execution process is essentially a subgraph matching
process on a knowledge graph.

Serving a large knowledge graph is never an easy task. The
challenges come from: 1) Large data size: For a real-life system,
data size does matter. Graph query processing algorithms with
O(n2) or higher complexity are common; they are infeasible

∗This work was done at Microsoft Research (Beijing, China).

for large graph data [10]. 2) Complex data schema: Compared
to social graphs which tend to have a few data types, e.g. person
and post, a real-world knowledge graph usually has thousands
of entity types and relationships. 3) Diversity of queries: Users
may need to query knowledge data in different ways other than
SPARQL, including knowledge exploration, keyword search,
and so on.

The paper presents our experience obtained in developing
a system for serving real-world knowledge graphs. The paper
is organized as follows: Section II introduces how knowledge
graphs are modeled and served on top of the Trinity graph
engine. The system implementation details are presented in
Section III. Section IV concludes.

II. KNOWLEDGE SERVING FRAMEWORK ATOP TRINITY

Let us start from a real-life knowledge graph query example.
Fig. 1 is an example of relation search on a graph with about
25.49 billion triple facts. In this example, we want to find
the relations between a given set of entities. For this example,
we can find 94 relations between Tom Cruise, Mimi Rogers,
Nicole Kidman, and Katie Holmes within 100 milliseconds
using the system we are going to introduce. Fig. 1 visualizes
some selected relations.

Fig. 1: Relation Search over Knowledge Graph

Our goal is to design a knowledge graph system which
serves online queries in real time. Specifically, the system is
designed for large knowledge graphs with billions of entities;
it supports index-free graph exploration; it must be flexible
enough to support a large range of knowledge graph queries. In
this section, we will introduce how we build a system satisfying
these requirements.

A. Knowledge Graph Modeling

We build our system on top of Trinity [11], on which index-
free graph exploration can be easily implemented. We will



reference our system as Trinity.KS in what follows. Trinity
provides very efficient random data access supports. It can
explore millions of edges in a graph with 800 million nodes and
100 billion edges in 100 ms [11]. This lays a good foundation
for graph serving without using costly structural indexes. By
supporting user-specified data modeling and graph computation
paradigms, Trinity can easily morph into an efficient distributed
graph serving system.

The data modeling in Trinity is facilitated by a declarative
language called Trinity Specification Language (TSL). We use
TSL to model all kinds of graphs. TSL specifies the data
schema for both graph nodes and edges. The basic unit used
for specifying data schema is called cell struct. Syntactically,
cell struct resembles the struct construct of the programming
language C/C++ or C#. A cell struct can contain an arbitrary
number of data fields. A data field is either a primitive value
or a collection of primitive values. Fig. 2 shows a sample
TSL script that defines a knowledge graph entity type Person.
The Person type contains three data fields. Among them, the
Friends field is annotated by EdgeType, indicating this field is
an “edge” pointing to other graph nodes. In Trinity, a graph
node can be referenced by a 64-bit integer. Therefore, we can
just use a list of Int64 to represent an entity’s adjacent nodes.
The modifier optional before DateOfBirth indicates the data
field is nullable.

cell struct Person {
String Name;
optional DateTime DateOfBirth;
[EdgeType:SimpleEdge]
List〈Int64〉 Friends;

}

Fig. 2: TSL script that specifies an entity type

From the graph point of view, RDF data itself is a native
simple graph with subjects/objects being nodes and predicates
being labeled edges. Given an entity, we can use 〈key, value〉
pairs to represent its corresponding RDF predicates/values.
Despite the simplicity, the straightforward data modeling
mechanism is suboptimal for both data storage and access.
Linear search is needed to get a certain property of an entity. To
tackle this problem, Trinity.KS models RDF data in a strongly
typed way. Each data property specified by TSL can be directly
accessed by invoking a pre-compiled method.

RDF schema is expressed as meta triples. Meta triples
are special triples that use a special vocabulary to specify
data types and their corresponding schemata. The mapping
from RDF meta data to Trinity TSL types is shown in Fig. 3.
A typical real-life knowledge data set may have thousands
of entity types and properties. For these RDF data sets, it is
infeasible to manually specifying the schema for each entity. To
automate graph modeling process, we implemented a TSL script
generator for RDF meta data extraction and TSL generation.

RDF(S) Statement TSL Mapping
T rdf:type rdfs:Class Trinity type T
p rdf:type rdfs:Property Trinity property p
p rdfs:domain T p belongs to type T
p rdfs:range ClassType p is a neighbor property
p rdfs:range LiteralType p is a literal property
p1 rdfs:subPropertyOf p2 p1 has the same setting as p2

Fig. 3: Mapping RDF Meta Triples to TSL

There is another data modeling challenge posed by RDF
data: an RDF entity may belong to more than one RDF classes.
For example, consider the entity named “Pal” who is a Dog. But
at the same time “Pal” is also an Actor1. We call entities like
“Pal” multi-typed entities. We cannot simply use the inheritance
or subtyping mechanism to model multi-typed entities because
the relationship established between the classes of an entity is
not an “isA” or subtype relationship.

A straightforward approach to modeling multi-typed entities
is to create a compound RDF class combining multiple classes
and then map it to a single graph node type. Unfortunately,
this approach is infeasible for large graphs because it causes
combinatorial explosion.

In Trinity.KS, we decompose a multi-typed entity into
several segments with each one corresponds to a Trinity cell
type. These segments of an entity are still strongly typed and
organized by a mediator. The mediator provides a set of unified
data access interfaces to applications and routes applications’
accesses to the right segments. The strongly typed segments
are called a cell group, consisting of a root cell, several child
cells, and a generic cell. The root cell is the mediator that
organizes child cells and routes data accesses to child cells’
pre-compiled methods. A root cell consists of three parts:

〈entity-id, type-list, child-list〉 (1)

The entity-id keeps the original entity ID in RDF (usually URI
or IRI). Each element of the child-list is a pointer pointing to
one child cell. Each child cell stores a portion of an entity’s
properties defined by its corresponding RDF class. The “Pal”
entity, for instance, has two child cells – a Dog cell and an
Actor cell. To maintain user-defined or unknown properties, an
optional generic cell can be defined:

〈adjacency-list, property-list〉 (2)

Each element in the adjacency-list is a 〈predicate, cell-id〉 pair
which records the cell id of the neighbor node and the predicate
on the edge. The property-list is a collection of 〈predicate,
value〉 pairs for literal properties.

For an entity, its root cell is placed at the head, followed
by all its child cells. The generic cell, if it has, is placed at the
end. Thus the physical layout of an entity looks like:

〈root-cell, child-cell1, child-cell2, . . . , generic-cell〉 (3)

procedure GETNEIGHBOR(entity id)
root ← LOADROOTCELL(entity id)
neis ← Ø // initialize neighbors with an empty set
for each cell in root’s child–list do

neis ← neis ∪ cell.adjacentV ertex
end for
return neis

end procedure

Fig. 4: An Entity Access API Example

To manipulate an entity as a whole, Trinity.KS provides a set
of entity access APIs on top of the cell manipulation primitives
provided by Trinity. For example, GETNEIGHBOR procedure

1As a dog actor, “Pal” portrayed Lassie in several films (e.g., Lassie Come
Home).



is done by visiting all the adjacent neighbors of the child cells
as shown in in Fig. 4. The method LOADROOTCELL loads the
root cell for the specified entity id while the adjacentV ertex
method returns all the adjacent neighbors of a given cell.

III. SYSTEM IMPLEMENTATION

In this section, we introduce the modularized system
architecture, the details of knowledge graph importing/loading,
and the performance numbers of Trinity.KS on a real-life large
knowledge graph.

A. System Architecture

Trinity.KS has three levels of service abstraction to provide
the flexibility of supporting different knowledge serving tasks:
Storage Layer, Graph Layer, and Application Layer. The
storage layer serves as the data storage back-end. The purpose of
this layer is to manage the knowledge graph and some runtime
data in Trinity, providing data manipulation interfaces at the
granularity of cells. On top of them, the graph layer implements
a strongly typed graph model and provides data manipulation
interfaces at the granularity of entities. These interfaces are also
wrapped up as RESTful APIs. The application layer built on
top of the graph layer provides knowledge powered application
features (e.g. knowledgebase powered question answering) to
the end users. Details of each layer are elaborated as follows.

1) Storage Layer: This layer manages the knowledge graph
data in Trinity. We explain how this layer works from a data
flow perspective. To manage a large knowledge graph data set,
the first issue we need to address is how to place the data in the
distributed storage, namely, data sharding. In Trinity.KS, data
sharding is supported by Trinity, and the default mechanism
is sharding by hashing cell ids. In other words, the graph
is randomly partitioned. Each machine of the Trinity cluster
manages a graph partition in a strongly typed manner and
leverages Trinity’s message passing mechanism for server side
computation as illustrated in Fig.8. Cells of the same entity are
guaranteed to be placed on one machine to reduce the message
passing costs during the query processing. This can be easily
realized by a carefully designed encoding mechanism on cell
id since Trinity allows applications to override its built-in data
partitioning scheme.

e1

e2
e3

e5

e4e6
Trinity Slave

Strong-Typed Entity

Physical Layout

Fig. 8: Trinity.KS Storage Layer

2) Graph Layer: This layer provides an entity graph view
via the strongly typed entity model. The core capability provided
by this layer is a set of index-free graph exploration APIs. As
elaborated in the knowledge serving framework, we are able to
traverse among entities on top of Trinity cells. Advanced graph
operators, such as finding shortest paths, performing random
walks, can be built on these interfaces. For neighbor nodes on
the local machine, we can directly perform graph exploration.
We need to use the message passing mechanism provided by
Trinity to perform user-defined server side computation to
explore the graph across network.

To facilitate the process of building knowledge applications,
utility APIs (e.g. entity auto completion APIs) are also provided
by the graph layer. These helper interfaces are used as the basic
building blocks of the application layer.

3) Application Layer: With a rich set of graph access
interfaces provided by the graph layer and the storage layer, a
large range of knowledge powered applications can be easily
built. Trinity.KS implements a few built-in graph search features,
such as Relation Search, Graphical Knowledge Query, and
Knowledge Graph Explorer. Currently, the services provided
by Trinity.KS is mainly consumed by knowledge powered
natual language processing applications. A set of knowledge
powered text comprehension applications are built on top of
Trinity.KS by our peer research groups.

B. Graph Importing

Converting RDF data set to a distributed knowledge graph
is a not a trivial task. The graph importing/loading procedure
consists of three steps, i.e. data preprocessing, graph schema
generation, and graph construction.

The input of the data preprocessing process is the raw RDF
triples. Each Trinity slave in the cluster scans the shared raw
RDF triples to extract its data partition. After obtaining the
local data partition, each slave sorts the triples by subject and
predicate.

Then, the data is transformed into an intermediate format.
During the transformation, a) the data is cleaned using a set
of predefined data cleaning rules; b) the RDF meta triples
are extracted. The meta data on each Trinity slave will be
aggregated at the end of the data transformation. Then a
TSL script describing the graph schema is generated from
the aggregated meta data using a tool mentioned earlier.

The graph construction process is performed after data
cleaning and graph schema generation. Since the graph are
already partitioned in the data preprocessing step, the distributed
graph can be constructed in parallel by all Trinity slaves. Once
the graph is constructed, it can be accessed and manipulated
via the pre-compiled methods.

C. Query Processing

The most distinguishing characteristic of Trinity.KS is its
index-free graph query processing paradigm. To illustrate the
idea, we take entity relation search as an example. Answering
a relation search query is equivalent to answering multiple
shortest path queries under a max hop threshold k.

Typical shortest path query processing employs pre-built
indexes. There is an obvious tradeoff between the query



Fig. 5: API Response Time Fig. 6: API Throughput Fig. 7: Relation Search Response

response time and indexing costs. In order to serve the graph
data in a real-time manner, the algorithms that heavily relies
on indexes usually have a costly preprocessing procedure.
Unfortunately, the state-of-the-art algorithms typically have
O(n2) or higher complexities for index construction. The
knowledgeq graph we are handling has 2.4 billion graph node,
n2 means 5.76 × 1018, which is practically infeasible if we
adopt these indexing based query processing methods.

To avoid building the prohibitive indexes, Trinity.KS uses
fast index-free graph traversal to answer graph queries. For
knowledge graph query processing, we have two key ingredi-
ents: a) Leveraging the rich schemata of the knowledge graph
to prune graph traversal paths. As discussed earlier, knowledge
graph usually has very complex data schema compared to other
graphs, such as social networks or web graphs. On the one
hand, the complex data schema poses great challenges for graph
modeling; on the other hand, the rich schema information can
help us prune the graph traversal space during query processing.
For example, suppose we are to find shortest paths between
two persons, from the graph schema we know that the Person’s
predicate profession will never route to another Person, thus
edges with this predicate can be pruned during traversing.
b) A highly optimized asynchronous fan-out search (AFOS).
AFOS is similar to what a distributed breadth-first search (BFS)
does, but there is a clear difference. AFOS performs graph
exploration hop by hop like BFS, however the search process
is fully asynchronous, meaning a sub-search task never needs
to wait for the termination of other sub-search tasks invoked
at the same hop. Compared to BFS, AFOS can greatly reduce
the synchronous overhead.

By leveraging the fast random data access capability
provided by the underlying Trinity infrastructure, the index-
free graph traversal based query processing paradigm works
very well for billion node knowledge graphs. The performance
numbers on a large real-life knowledge graph is presented in
the next subsection.

D. Performance on Real-world Knowledge Graph

We are serving a large real-world knowledge graph with
about 25.49 billion of triple facts using Trinity.KS steadily for
more than a year.

Some performance numbers for primitive graph exploration
APIs and Relation Search queries are showed in Fig. 5-7. All
primitive graph exploration API calls can return within 2.5
milliseconds with the network cost included. At the same time,
the system also has high throughput as shown by Figure 6.
Fig. 7 shows the response time of 10 randomly sampled entity

relation search queries. For most of the relation search queries,
our system can respond within 100 milliseconds.

IV. CONCLUSION

The paper presents a real-time knowledge graph serving
system Trinity.KS on top of a distributed in-memory graph
engine called Trinity. It can efficiently support basic knowledge
graph exploration APIs as well as advanced knowledge graph
search queries for real-world billion node knowledge graphs.
A set of knowledge-consuming applications, especially for
machine text comprehension, are built within our research lab
based on the knowledge graph serving capability provided by
Trinity.KS.

ACKNOWLEDGMENTS

This work is partially supported by the National Science
Foundation for Distinguished Young Scholars of China (Grant
No. 61325010).

REFERENCES

[1] T. Berners-Lee, J. Hendler, O. Lassila et al., “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 28–37, 2001.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proceedings of the 16th international conference on
World Wide Web. ACM, 2007, pp. 697–706.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a
collaboratively created graph database for structuring human knowledge,”
in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. ACM, 2008, pp. 1247–1250.

[4] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “Dbpedia-a crystallization point for the web of data,”
Web Semantics: science, services and agents on the world wide web,
vol. 7, no. 3, pp. 154–165, 2009.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
Dbpedia: A nucleus for a web of open data. Springer, 2007.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and
T. M. Mitchell, “Toward an architecture for never-ending language
learning.” in AAAI, vol. 5, 2010, p. 3.

[7] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager et al., “Building
watson: An overview of the deepqa project,” AI magazine, vol. 31, no. 3,
pp. 59–79, 2010.

[8] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A probabilistic
taxonomy for text understanding,” in SIGMOD ’12, pp. 481–492.

[9] “http://www.linkeddata.org/.”
[10] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph

matching on billion node graphs,” Proceedings of the VLDB Endowment,
vol. 5, no. 9, pp. 788–799, 2012.

[11] B. Shao, H. Wang, and Y. Li, “Trinity: a distributed graph engine on
a memory cloud,” in SIGMOD ’13. New York, NY, USA: ACM, pp.
505–516.


