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The purpose is to share knowledge. The series of talks try to
▶ Paint a “big picture” and clarify “vague” concepts.
▶ Provide verified recipes.



Outline

▶ Session I: Basics
▶ Prologue
▶ Basics of Quantum Chemistry

▶ Session II: HF and DFT
▶ Prologue
▶ Hartree–Fock Method
▶ Density Functional Theory



Session I: Prologue



Is quantum chemsitry hard? How hard is it to implement a
quantum chemistry suite out of thin air?

This is a story about a little horse crossing the river …



Physicists’ View vs Chemists’ View

The chemists working on computational chemistry are essentially
computer scientists who need to take into consideration the
limitations of computer architectures to devise the solutions of
mathematical equations raised by physicists.

For our case, we are talking about turning differential equations
(physicists’ view) to matrix algebra (chemists’ view).



HF and DFT

You may ask
What we care about is DFT (Density Functional Theory), why do
you bother talking about HF (Hartree–Fock)?

The Hartree-Fock method is probably the simplest by which we can
introduce Self-Consistent Field (SCF), which is the core procedure
for a wide range of computational chemsitry methods, including
DFT.
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The Connection between HF and DFT

HF

FhfC = S Cε,

where Fhf = Hcore + J − 0.5K, Hcore = T + V .

DFT

FdftC = S Cε,

where Fdft = Hcore + J − 0.5aK + bVxc, a and b are the hybrid
coefficients for mixing the Hartree-Fock exchange and the pure DFT
exchange-correlation.



The Companion Project: LightAIMD

LightAIMD: A Lightweight Ab Initio
Molecular Dynamics program

▶ Supported methods: Hartree–Fock, Density Functional Theory
▶ Functionality: single point energy, forces on nuclei, BOMD

(Born-Oppenheimer Molecular Dynamics)
▶ Minimalist yet generic

▶ Supports all the basis sets in BSE (Basis Set Exchange)
▶ Supports the functionals provided by Libxc (LDA, GGA, Hybrid

GGA, MGGA, Hybrid MGGA)
▶ Minimizing external dependency, as self-contained as possible

▶ Eigen, header files only, MPL 2.0
▶ Nlohmann/json, one single header file, MIT
▶ Libxc (614 functionals as of v5.2.2), MPL 2.0

▶ Heavily commented C code (LOC: 12075 as of now)

https://github.com/microsoft/LightAIMD



LightCC and PySCF Results

HF LDA1 GGA1

LightCC -7.49646977127e+01 -7.47393612050e+01 -7.52337096075e+01
PySCF -7.49646977127e+01 -7.47393642241e+01 -7.52337124545e+01

GGA2 MGGA1 MGGA2

LightCC -7.53194710415e+01 -7.53107403924e+01 -7.53182572189e+01
PySCF -7.53194733533e+01 -7.53107436057e+01 -7.53182583267e+01

LDA1 : Slater, VWN GGA1 : PBE, PBE GGA2 : B3LYP

MGGA1 : M06-L, M06-L MGGA2 : M06-2X, M06-2X

Molecule: H2O
Basis set: STO-3G



The Development Philosophy

How to build a system with many components out of thin air?

“Get the overall design right, build something which works as
quickly as possible then improve, improve, improve.”

Handbook of computational quantum chemistry, p121 (143/765).
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Required Knowledge

The most important mathematical tool used in quantum chemistry
is matrix algebra.

Modern quantum chemistry (Szabo and Oslund), p1 (16/481).



Required Knowledge

▶ Matrix algebra
▶ Lagrange multipliers method
▶ Antisymmetrizing operator
▶ Contracted Gaussian and its first and second derivatives
▶ Analytical solutions to various integrals involving contracted

Gaussian
▶ Hermite Gaussian
▶ Hermite polynomials

▶ Numerical integration
▶ Confocal elliptical coordinates
▶ Chebyshev–Gauss quadrature
▶ Solid angle
▶ Spherical coordinate system

▶ · · ·



Important References

▶ Modern quantum chemistry (Szabo and Oslund), book
▶ Handbook of computational quantum chemistry, book
▶ Ideas of quantum chemsitry, book
▶ Handbook of mathematical functions, book
▶ Gaussian basis sets and molecular integrals, book chapter
▶ One- and two-electron integrals over Cartesian Gaussian

functions, JCP 26, 1978
▶ A multicenter numerical integration scheme for polyatomic

molecules, JCP 88, 1988
▶ An adaptive numerical integrator for molecular integrals, JCP

108, 1998
▶ A quadrature formula for the sphere of the 131st algebraic

order of accuracy, Doklady Mathematics 59, 1999

JCP: Journal of Computational Physics





https://github.com/pyscf/pyscf/blob/master/pyscf/
lib/dft/CxLebedevGrid.c

5138 lines

http://www.ccl.net/cca/software/SOURCES/FORTRAN/
Lebedev-Laikov-Grids/Lebedev-Laikov.F

6949 lines



Useful Tools

▶ Orbital Viewer
▶ falstad.com/qmatom/qmatom.html
▶ ptable.com
▶ basissetexchange.org
▶ VMD (Visual Molecular Dynamics)



Basics
The “common sense” knowledge among the chemists.



Caveat

The meanings of many terms in quantum chemsitry are
context-dependent.



Molecule

A molecule is an electrically neutral group of two or more atoms
held together by chemical bonds.

https://en.wikipedia.org/wiki/Molecule



Molecule

In computational quantum chemistry, “molecule” subsumes atom,
ion, radical, a collection of these etc. and simply means a set of
positively-charged nuclei and some captive electrons.

For most of our studies we shall be dealing with isolated molecules;
molecules which are not in interaction with their environment in
any way. That is these systems will have their energy conserved;
their energies and electron distributions are independent of time.

Handbook of computational quantum chemistry, p1 (24/765).



Big Picture

There are two principal approaches to modeling molecular
electronic structure and molecular bonding.

▶ Valence Bond (VB) Theory
▶ Based on Lewis theory (ionic bonds, covalent bonds, …)
▶ Lewis notion on a quantum mechanical footing

▶ Molecular Orbital (MO) Theory



Atomic Orbital

An atomic orbital is a mathematical function describing the location
and wave-like behavior of an electron in an atom. We can call a
wave function for an electron an atomic orbital.

The term atomic orbital may also refer to the physical region or
space where the electron can be present, as predicted by the
particular mathematical form of the orbital.

https://en.wikipedia.org/wiki/Atomic_orbital



Visualizing Orbitals

Since an electron can theoretically occupy all space. It is impossible
to draw an orbital.

In practice, orbitals are the regions of space in which electrons are
most likely to be found. All we can do is draw a shape that will
include the electron most of the time, say 95% of the time. We call
this shape the 95% contour.

https://socratic.org/chemistry/the-electron-configuration-of-atoms/arrangement-of-electrons-in-orbitals-spd-and-f



Denoting Orbitals

Each orbital is denoted by a number and a letter.

The number denotes the energy level of the electron. Number 1
refers to the energy level closest to the nucleus; 2 refers to the next
energy level further out, and so on.

The letter refers to the shape of the orbital. The letters go in the
order s, p, d, f , g, h, etc. The letters s, p, d, and f were assigned for
historical reasons.

https://socratic.org/chemistry/the-electron-configuration-of-atoms/arrangement-of-electrons-in-orbitals-spd-and-f



s Orbital

▶ An s orbital is spherically symmetric
around the nucleus of the atom.

▶ A 2s orbital is larger with two layers.
There is a surface between the two balls
where there is zero probability of finding
an electron. We call this surface a node
or a nodal surface.

▶ A 3s orbital is even larger with two nodes.

https://socratic.org/chemistry/the-electron-configuration-of-atoms/arrangement-of-electrons-in-orbitals-spd-and-f



p Orbital

▶ At the second level, there are orbitals
called 2p orbitals in addition to the
2s orbital.

▶ There are three equivalent p orbitals
pointing mutually at right angles to
each other, 2px, 2py, and 2pz.

▶ There are in total four orbitals (2s,
2px, 2py, and 2pz) at the second level.



d Orbital

▶ At the third level, there are five
d orbitals as well as the 3s and
3p orbitals: 3dxy, 3dxz, 3dyz,
3dx² - y², 3dz².

▶ Counting the 3s and 3p orbitals,
this makes a total of nine
orbitals at the third level.



f Orbital

▶ At the fourth level, there are
seven f orbitals in addition to
the 4s, 4p, and 4d orbitals.

▶ Counting the 4s, 4p, and 4d
orbitals, this makes a total of 16
orbitals at the fourth level.



s p d f g h i k m n o q r t u v w x y z



Quantum Numbers

Each electron is described by four quantum numbers:
▶ Principal quantum number n
▶ Angular momentum quantum number l
▶ Magnetic quantum number m or ml

▶ Spin quantum number s or ms

https://en.wikipedia.org/wiki/Quantum_number



Where do these quantum numbers come from?



The Electronic Schrödinger Equation for Hydrogen

Ĥψ = Eψ

Eψ = Ĥψ =
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Expanding the equation in spherical coordinates:
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me2 , L2ℓ+1
n−ℓ−1(· · · ) is the generalized Laguerre polynomial of degree

n − ℓ − 1, Ym
ℓ (θ, ϕ) is a spherical harmonic function of degree ℓ and order m.

The numbers n, ℓ, and m are called quantum numbers.

n = 1, 2, 3, . . .

ℓ = 0, 1, 2, . . . , n − 1

m = −ℓ, . . . , ℓ



Relativistic Quantum Mechanics and Electron Spin

In 1928, Dirac developed the relativistic quantum mechanics of an
electron, and in his treatment electron spin arises naturally.

Quantum chemistry, 7ed, p265.



Principal Quantum Number n

Principal number n specifies the energy of an electron and the size
of the orbital.

All orbitals that have the same value of n are said to be in the same
shell.

1. An electron is in its ground state when n = 1;

2. An electron is in an excited state when n ≥ 2.

The total number of orbitas for a given n is n2.



Angular Momentum Quantum Number l

Angular number l specifies the shape of an orbital. Quantum
number l divides the shells into smaller groups of orbitals called
subshells.

l 0 1 2 3 4 · · ·
s p d f g · · ·



Magnetic Quantum Number m

Magnetic number m (or ml) specifies the orientation of an orbital in
space. The number devides a subshell into individual orbitals which
holds the electrons.

There are 2l + 1 orbitals in each subshell.

s p d f g · · ·
1 3 5 7 9 · · ·



Spin Quantum Number s

The spin number s (or ms) specifies the orientation of the spin axis
of an electron. An electron can spin in only one of two directions.

▶ s = + 1
2 , up

▶ s = − 1
2 , down



Now we can rigorously and clearly define
Pauli exclusion principle.



Pauli Exclusion Principle

The Pauli exclusion principle states that no two electrons in the
same atom can have identical values for the four quantum numbers.

Implications

▶ No more than two electrons can occupy the same orbital.
▶ Two electrons in the same orbital must have opposite spins.

For two electrons in the same orbital, the spins are said to be paired.

https://www.angelo.edu/faculty/kboudrea/general/quantum_numbers/Quantum_Numbers.htm



Some Helpful “Mental Models”

▶ An atom is a “city” with many “parking buildings”.
▶ A shell is a “parking building”; the higher the energy, the bigger

the building.
▶ Like a car, each electron has a unique “license plate” which has

4 digits (quantum numbers).
▶ Each orbital is a small “parking lot” for two electrons.



Molecular Orbital Theory

The most successful method to construct one-electron wave
function is to consider them delocalized over the whole molecule.
Therefore there will be a set of orbitals, one for each electron, which
are spread over the whole molecule. We call this type of treatment
molecular orbital theory.

The individual one-electron wavefunctions are called molecular
orbital.

For molecular orbital, we use the following notation convention:
▶ φ: the spatial orbital (“one eye”: spatial)
▶ ϕ: the spinorbital (“two eyes”: spatial + spin)



Spin-orbital and Spatial-orbital

A spin-orbital is a function of the coordinates in a 4D space (3D
Cartesian coordinates and 1D spin coordinates), and in the general
case, it takes the following form:

ϕi(x, y, z, s) = φi1(x, y, z)α(s) + φi2(x, y, z)β(s),

where the spatial components φi1 and φi2 that depend on the
position of the electron can adopt complex values, while the spin
functions α and β, which depend on the spin coordinates s.

Ideas of quantum chemistry, p394



Spin Basis Functions

Two widely used basis functions in the spin space:

α(σ) =

1, σ = 1
2

0, σ = − 1
2

β(σ) =

0, σ = 1
2

1, σ = − 1
2



Real or Complex

In the vast majority of quantum mechanical calculations, the
spin-orbital ϕi is a real function.

For all the cases we are going to deal with, the molecular orbitals
are to be expanded in terms of a set of real basis function with real
expansion coefficients.

In the more general case, the basis functions are real, the expansion
coefficients may be allowed to be complex. This is not a restriction
of principle but one of practice, since there is only slight advantage
to be gained by the use of complex orbitals.

Handbook of computational quantum chemistry, p137 (159/765) and p138 (160/765).



The question then is what functions do we use to treat these
one-electron delocalized orbitals.



Let us assume that we have access to the set of all solutions of the
one-electron Schrödinger equation. Mathematically, these solutions
are the eigenvalues and eigenvectors of a Hermitian operator (ĥ).

ĥϕi = ϵiϕi

One important property is that they are complete. Any function of
an ordinary 3D space with sufficiently similar boundary conditions
can be expanded as a linear combintation of these functions.

Handbook of computational quantum chemistry, p11 (33/765).



Linear Combination of the Atomic Orbitals (LCAO)

In the LCAO method, each molecular orbital is presented as a linear
combintation of atomic orbitals χu

ϕi =

M∑
u

ciu χu

From a mathematical point of view, the equation represents an
expansion of an unknown function ϕi in a series of the known
functions χu, which belong to a certain complete set, M should
generally equal∞. In real life, we need to truncate this series; i.e.,
use some limited M.

Ideas of quantum chemistry, p431 (470/1270).



Slater-Type Orbital (STO)

We know the exact solutions for a hydrogen like atom so we can use
such atomic orbitals for representing our delocalized molecular
orbitals. Such atomic orbitals are called the slater type orbitals.

χ(r, θ, ϕ) = N rn−1 e−αr Ym
l (θ, ϕ)

▶ N is a normalizing constant,
▶ r is the distance of the electron from the atomic nucleus,
▶ n = 1, 2, · · · is the principal quantum number,
▶ α is a constant related to the effective charge of the nucleus,
▶ Ym

l is the spherical harmonics.

https://en.wikipedia.org/wiki/Slater-type_orbital



Slater-Type Orbital (STO)

Centering of Atomic Orbitals
If a complete set of orbitals were at our disposal, then all the atomic
orbitals might be centered around a single point.

It is more economic, however, to allow using the incomplete set of
atomic orbitals centered at nuclei to be the basis.



STO: the Upside and the Downside

Slater type orbitals (STOs) are the exact solutions for the hydrogen
atom and provide an accurate basis set for many electron molecules.

However, the calculations of the integrals are expensive as there is
no simple exact solution for the integrals.



One way around this is to approximate the Slater type orbitals using
a sum of contracted Gaussian functions (CGF). There are simple
analytical expressions for the integrals between two Gaussians so
this can save a lot of computing time.

As the number of Gaussians is increased, the function more closely
describes the slater type orbitals. Nearest the center the
approximation is poorest. This region is called the cusp .



Contracted Gaussian functions (CGF)

M∑
i

ci (x − x0)l(y − y0)m(z − z0)n e−αi[(x−x0)2+(y−y0)2+(z−z0)2]
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exp(-x)

exp-x2

exp-10 x2



Big Picture

Basis-set based methods are not the only available approach to
quantum chemistry.

“It is our desire to develop a completely numerical, non-basis-set
scheme for quantum chemical calculations on polyatomic
molecules, in general. No such scheme currently exists.”

A multicenter numerical Integration scheme for polyatomic molecules, JCP 88, 2547.



Closing Part II and setting up the stage for Part III …



HOMO and LUMO

HOMO
HOMO is the Highest Occupied Molecular Orbital.

LUMO
LUMO is the Lowest Unoccupied Molecular Orbital. The
unoccupied molecular orbitals are called virtual orbitals.



HOMO and LUMO

https://en.wikipedia.org/wiki/HOMO_and_LUMO



Double Occupancy

We often assume the double occupancy of orbitals within what is
called closed shell.

In the double occupancy case, every spatial orbital is usually used to
form two spin-orbitals:

ϕ1(1) = φ1(1)α(1)

ϕ2(1) = φ1(1)β(1)

ϕ3(1) = φ2(1)α(1)

ϕ4(1) = φ2(1)β(1)

· · · · · ·



Closed Shell and Open Shell

Closed Shell is a shell that contains the maximum number of
electrons permitted by the exclusion principle. This means that the
HOMO is doubly occupied, as are all the orbitals that have equal or
lower energy.

Closed Shells occur when there is a rather large energy gap
between the last filled level (HOMO) and the lowest available empty
level (LUMO).

If a shell is not closed, it is called “open”.



More on the Notion of “Closed Shell”

Note: The term “closed shell” is of approximate character because it
is not clear what it means when we say that the HOMO-LUMO
energy distance is large or small.

Ideas of quantum chemistry, p410.



For what follows, double occupancy and closed shell are assumed
unless stated otherwise.
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Session II: Prologue



Philosophy

It is clearly impossible to cover every aspect of HF and DFT within
one hour or two. This session is designed to be pragmatic and only
includes what is absolutely necessary for implementing HF and DFT.

Approach

▶ Focus on the verified recipes, instead of a complete theory.
▶ Paint the big picture (rough sketch), then complete it with

details.
▶ Reduce the problem, reduce the problem, reduce the problem

until it becomes “trivial” ones (pure engineering tasks).
▶ Emphasize the connections between equations, instead of the

physical meaning of each symbol.
▶ Provide the formulae that are ready to be converted into code.



Notation

natm : number of atoms

nele : number of electrons

nbas : number of basis functions

ngrd : number of grid points

µ, ν, λ, σ : indices of matrix entries or basis functions

Superscript and subscript

Vxc← label

Pµν← indices



Simplification Ladder in Computational Chemistry

Dirac equation
(With relativistic effects)

⇒ Time-dependent Schrödinger equation
(Relativistic effects ignored)

⇒ Time-independent Schrödinger equation
⇒ Born-Oppenheimer approximation
(Electronic Schrödinger equation with nuclear positions as parameters)

⇒ Independent-particle models
(Interactions are taken into account in an average fashion)

⇒Molecular orbital theory
⇒ Orbitals are arranged in Slater determinants
(Wavefunction must be antisymmetric because electrons are fermions)

⇒ Orbitals restricted to be a single Slater determinant



How do we convert a continuous operator problem
to a discrete problem?

The general approach is Galerkin method.

https://en.wikipedia.org/wiki/Galerkin_method



The Roothaan-Hall’s Framework

Matrix representation in a infinite basis
When the molecular orbitals are represented by a basis set, an
operator can be expanded in terms of the basis functions to form a
set of matrix equations.

These matrix equations for the Hartree-Fock method were
developed independently by Clemens C. J. Roothaan and George G.
Hall in 1951 (each of whom was a graduate student at the time).

Exploring chemistry with electronic structure methods, p474.



Roothaan-Hall Matrix Equation

FC = S Cε

▶ F is the Fock matrix.
▶ C is the matrix of MO (molecular orbital) coefficients.
▶ ε is the diagonal matrix of orbital energies.
▶ S is the overlap matrix.∑

ν

FµνCνi = ϵi

∑
ν

S µνCνi



HF and DFT under Roothaan-Hall Framework

HF

FhfC = S Cε,

where Fhf = Hcore + J − 0.5K, Hcore = T + V .

DFT

FdftC = S Cε,

where Fdft = Hcore + J − 0.5aK + bVxc, a and b are the hybrid
coefficients for mixing the Hartree-Fock exchange and the pure DFT
exchange-correlation.



Correlation Energy: HF vs DFT

Correlation energy can be defined as the difference between the
exact nonrelativistic energy of a system and the Hartree-Fock
energy.

▶ For first-row atoms and molecules the Hartree-Fock energy is
typically more than 99% of the total energy.

▶ The energy differences that are of interest in chemistry, such as
binding energies, are also only 1% or less of the total energy.

▶ The Hartree-Fock approximation is not adequate for describing
various phenomena of interest.

Gaussian basis sets and molecular integrals, Chapter 12 of Modern electronic structure



Two Basic Problems in HF and DFT

1. Solving FC = S Cε.

2. Energy calculation.



Hartree–Fock: Two Basic Problems

Solving the Equation

FC = S Cε,

where F = Hcore + J − 0.5K.

Energy Calculation

Pµν = 2
nele/2∑

i

CµiC∗νi

E =
∑

i

∑
j

ZiZ j

ri j
+

∑
µ

∑
ν

PνµHcore
µν +

1
2

∑
µ

∑
ν

PνµJµν −
1
4

∑
µ

∑
ν

PνµKµν

Z: nuclear charge



Hartree–Fock: Two Basic Problems

Solving the Equation

FC = S Cε,

where F = Hcore + J(P) − 0.5K(P).

Energy Calculation

Pµν = 2
nele/2∑

i

CµiC∗νi

E =
∑

i

∑
j

ZiZ j

ri j
+

∑
µ

∑
ν

PνµHcore
µν +

1
2

∑
µ

∑
ν

PνµJµν −
1
4

∑
µ

∑
ν

PνµKµν

Z: nuclear charge



DFT: Two Basic Problems

Solving the Equation

FC = S Cε,

where F = Hcore + J(P) − 0.5aK(P) + bVxc(P).

Energy Calculation

Pµν = 2
nele/2∑

i

CµiC∗νi

E =
∑

i

∑
j

ZiZ j

ri j
+

∑
µ

∑
ν

PνµHcore
µν +

1
2

∑
µ

∑
ν

PνµJµν −
a
4

∑
µ

∑
ν

PνµKµν + bExc

Z: nuclear charge



The Self-Consistent Field Loop

Initial guess at P

Solving FC = S Cε

Calculating new P and energy

∥δP∥2 > threshold
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The Self-Consistent Field Loop

Initial guess at P

Solving FC = S Cε

Calculating new P and energy

∥δP∥2 > threshold



Hartree–Fock



FC = S Cε[
Hcore + J(P) − 0.5K(P)

]
C = S Cε

The problem boils down to a question of constructing P, S , Hcore,
J(P), and K(P).



Density Matrix P

If we have solved the equation FC = S Cε with solution C and ε, we
can construct P as follows.

Pµν = 2
nele/2∑

i

CµiC∗νi

But, we need a P to construct the equation FC = S Cε. So, an initial
guess at P is required.

Modern quantum chemistry (Szabo and Ostlund), eq 3.145, p139.



Density Matrix P

If we have solved the equation FC = S Cε with solution C and ε, we
can construct P as follows.

Pµν = 2
nele/2∑

i

CµiC∗νi

But, we need a P to construct the equation FC = S Cε. So, an initial
guess at P is required.

Modern quantum chemistry (Szabo and Ostlund), eq 3.145, p139.



A Simple Scheme for Initializing P

[
Hcore + J(P) − 0.5K(P)

]
C = S Cε

Pµν = 2
nele/2∑

i

CµiC∗νi

HcoreC = S Cε



A Simple Scheme for Initializing P

[
Hcore + J(P) − 0.5K(P)

]
C = S Cε

Pµν = 2
nele/2∑

i

CµiC∗νi

HcoreC = S Cε



Interlude: Basis Functions

Before talking about how to build S , Hcore, J, and K, we need to
introduce the basis functions.

We have N contracted Gaussian functions as the basis functions χ1,
· · · , χN . Given any two basis functions χµ and χν, we define the
following functions:

f s(χµ, χν)

f t(χµ, χν)

f v(χµ, χν, xc, yc, zc)



Building S and Hcore

S µν = f s(χµ, χν)

Tµν = f t(χµ, χν)

Vµν = −
natm∑

i

Zi f v(χµ, χν, xi, yi, zi)

Hcore
µν = Tµν + Vµν



Interlude: Basis Functions

Given any four basis functions χµ, χν, χλ, and χσ, we define the
following function:

f eri (χµ, χν, χλ, χσ)



Building J and K

Jµν =
∑
λ

∑
σ

f eri (χµ, χν, χλ, χσ) Pλσ

Kµν =
∑
λ

∑
σ

f eri (χµ, χλ, χν, χσ) Pλσ



We are ready to solve the equation[
Hcore + J(P) − 0.5K(P)

]
C = S Cε

if we know how to calculate the following equations:

f s(χµ, χν)

f t(χµ, χν)

f v(χµ, χν, xc, yc, zc)

f eri (χµ, χν, χλ, χσ)



We are ready to solve the equation[
Hcore + J(P) − 0.5K(P)

]
C = S Cε

if we know how to calculate the following equations:

f s(χµ, χν)

f t(χµ, χν)

f v(χµ, χν, xc, yc, zc)

f eri (χµ, χν, χλ, χσ)



Defining f s, f t, f v

f s(χµ, χν) =
∫

dx dy dz χ∗µ χν

f t(χµ, χν) =
∫

dx dy dz χ∗µ(−
1
2
∇2)χν

f v(χµ, χν, xc, yc, zc) =
∫

dx dy dz χ∗µ(−
natm∑

i

Zi

rci
)χν

Modern quantum chemistry, eq 3.316 (p137), eq 3.151 (p141), eq 3.152 (p141).

Ideas of quantum chemisty, p399.



Defining f eri

f eri(χµ, χν, χλ, χσ)

=

∫
dx1 dy1 dz1

∫
dx2 dy2 dz2 χ∗

µ(x1, y1, z1)χν(x1, y1, z1) (
1

r12
) χ∗λ(x2, y2, z2)χσ(x2, y2, z2)



For the implementation details of f s, f t, f v, and f eri, refer to
Gaussian basis sets and molecular integrals, Chapter 12 of Modern
electronic structure (editor David R Yarkony).



Hartree-Fock in a Nutshell

Solving the Equation

FC =
[
Hcore + J(P) − 0.5K(P)

]
C = S Cε

Energy Calculation

E =
∑

i

∑
j

ZiZ j

ri j
+

1
2

∑
µ

∑
ν

Pνµ(2Hcore
µν +Jµν−0.5Kµν)

Initial guess at P

Solving FC = S Cε

Calculating new P and energy

∥δP∥2 > threshold



Density Functional Theory



DFT in a Nutshell

Solving the Equation

FC =
[
Hcore + J − 0.5aK + bVxc(P)

]
C = S Cε

Energy Calculation

E =
∑

i

∑
j

ZiZ j

ri j
+

1
2

∑
µ

∑
ν

Pνµ(2Hcore
µν +Jµν−0.5aKµν)+bExc

Initial guess at P

Solving FC = S Cε

Calculating new P and energy

∥δP∥2 > threshold

With the facilities built for Hartree–Fock, we only need to deal with
Vxc and Exc.



It seems simple and elegant. But, unfortunately we don’t know
what Vxc (exchange-correlation potential) is and Exc is generally
intractable analytically with an approximated Vxc.

The integrals involving the exchange-correlation potential have to
be evaulated numerically.

Handbook of computational quantum chemistry, p711.



Let’s build the infrastructure for numerical integration.

We first assume that we have a scheme for generating grid points in
the three dimentional space.



Angular Grid

Source: A quadrature formula for the sphere of the 131st algebraic order of accuracy



Radial Grid



Approximating Integrals

I =
∫

f (x, y, z) dx dy dz ≈
∑

i

wi f (xi, yi, zi)



Values on Grid Points

For each grid point, we can calculate the following values:
▶ The value of each basis function χµ
▶ The three 1st order derivatives of each basis function:
∂x χµ, ∂y χµ, ∂z χµ

▶ The six 2nd order derivatives of each basis function:
∂xx χµ, ∂yy χµ, ∂zz χµ, ∂yx χµ, ∂zx χµ, ∂zy χµ

▶ The laplacian of each basis function ∇2χ
µ:

∂xxχµ + ∂yyχµ + ∂zzχµ



Values on Grid Points (Continued)

▶ The density ρ:
2
∑
ν

χν
∑
µ

χ
µPµν

▶ The three density derivatives ∂x ρ, ∂y ρ, ∂z ρ, e.g.,

∂x ρ = 2
∑
ν

∂x χν
∑
µ

χ
µPµν

▶ The contracted gradient of the density σ:

(∂x ρ)2 + (∂y ρ)2 + (∂z ρ)2



Values on Grid Points (Continued)

▶ The three kinetic energy density components τx, τy, τz, e.g.,

τx =
∑
ν

∂x χν
∑
µ

∂x χµPT
µν

▶ The kinetic energy density τ:

τ = τx + τy + τz

▶ The laplacian of the density κ:

2
∑
ν

∇2χν
∑
µ

χ
µPµν + 4τ



A Really Simple Functional

Exc =

∫
f
[
ρ(x, y, z)

]
dx dy dz

f [ρ(x, y, z)] = c ρ4/3(x, y, z)
d f
dρ
=

4
3

c ρ1/3(x, y, z)

c = −0.7385587663820224

This functional is equivalent to the functional with id = 1 in libxc.



Libxc MGGA Interface



The MGGA Interface Used by LightCC

Input
▶ p: pointing to a specific functional
▶ np: the number of grid points
▶ rho: ρ
▶ sigma: σ
▶ lapl: κ
▶ tau: τ

Output
▶ exc: ϵ, the xc energy density per electron, ρϵ gives the value of the functional
▶ vrho: ρv, the derivative of ϵ with respect to ρ
▶ vsigma: σv, the derivative of ϵ with respect to σ
▶ vlapl: κv, the derivative of ϵ with respect to κ
▶ vtau: τv, the derivative of ϵ with respect to τ

Recent developments in libxc — A comprehensive library of functionals for density functional theory



With an “xc” functional, calculating Exc is easy.

Exc =

∫
f
[
ρ(x, y, z)

]
dx dy dz

≈
∑

i

wi f
[
ρ(x, y, z)

]



Done?

Unfortunately, no …



Done?

Unfortunately, no …



Revisiting the Two Basic Problems

Solving the Equation

FC =
[
Hcore + J − 0.5aK + bVxc(P)

]
C = S Cε

Energy Calculation

E =
∑

i

∑
j

ZiZ j

ri j
+

1
2

∑
µ

∑
ν

Pνµ(2Hcore
µν + Jµν − 0.5aKµν) + bExc



After the functional call, we get the following values: ϵ, ρv, σv, κv,
τv. For each grid point, we can calculate:

χv
µ = 0.5 ρv χ

µ + 2σv ∂x ρ ∂x χµ + 2σv ∂y ρ ∂y χµ + 2σv ∂z ρ ∂z χµ

χxτ
µ = 0.25 τv ∂x χµ, χyτ

µ = 0.25 τv ∂y χµ, χzτ
µ = 0.25 τv ∂z χµ

χ
µ , χ

v
µ : ngrd × nbas

∂x χµ , χ
xτ
µ : ngrd × nbas

∂y χµ , χ
yτ
µ : ngrd × nbas

∂z χµ , χ
zτ
µ : ngrd × nbas



Constructing V xc

Uµν =
∑

k

wk χ
v
kν
χ

kµ +
∑

k

wk χ
xτ
kν ∂x χkµ +

∑
k

wk χ
yτ
kν ∂y χkµ +

∑
k

wk χ
zτ
kν ∂z χkµ

V xc = U + UT

wk is the integration weight



Let’s pick up where we left off:
integration grid and numerical integration.



Partitioning Molecular Integration into Atomic Integration

I =
∫

f (x, y, z) dx dy dz ≈
∑

i

wi f (xi, yi, zi)

Motivate
For molecular integration, the integrand f(x,y,z) is dominated by
cusps at atomic nuclei. Therefore, a straightforward discrete
integration in Cartesian coordinates will not be very successful.

A multicenter numerical integration scheme for polyatomic molecules, JCP 88, 1988



Turning Molecular Integration into Atomic Integrations

I =
∫

f (x, y, z) dx dy dz

≈
ngrd∑

i

wi f (xi, yi, zi)

=

natm∑
j

ngrd∑
i

wi watm
j f (xi, yi, zi)

∑
j

watm
j = 1



References for Integration Grid Generation

▶ A multicenter numerical integration scheme for polyatomic
molecules, JCP 88, 1988

▶ An adaptive numerical integrator for molecular integrals, JCP
108, 1998



The End


