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1. Does a quantum state evolve in an indeterministic manner?
2. Why don’t electrons fall into the nucleus?
3. Does light travel in straight lines?



Don’t ask the wrong question in the quantum world

Richard Feynman
It is my task to convince you not to turn away because you don’t understand it. You
see, my physics students don’t understand it either. That is because I don’t
understand it. Nobody does.

Arthur Eddington
Not only is the universe stranger than we imagine, it is stranger than we can imagine.

Physicists understand the mathematics but not the world! Don’t ask why the world
works the way it is.



1. Founding experiments of quantum mechanics



Double-slit experiment

The experiment was first performed with light by Thomas Young in 1801. In 1927,
Davisson and Germer demonstrated that electrons show the same behavior, which was
later extended to atoms and molecules.



The study of black-body radiation

Blackbody radiator is any object that is a perfect emitter and a perfect absorber of
radiation. Classical theory failed to model blackbody radiation accurately. Planck
postulated that energy can be absorbed or emitted only in discrete units.



Photoelectric effect

Because a low-frequency beam at a high intensity could not build up the energy
required to produce photoelectrons like it would have if light’s energy were continuous
like a wave, Einstein proposed that a beam of light is not a wave propagating through
space, but rather a collection of discrete wave packets (photons).



Bohr’s atom model

Niels Bohr’s 1913 quantum model of the atom.





2. Deriving Quantum Mechanical Laws
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Two questions to answer for a theory describing a physical system:
▶ What are the states of a system?
▶ How do states change with time?



Q1: What are the states of a quantum system?
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An example in classical physics

For this example, the states of the system: {(−−→qsun,
−−→vsun), (

−−−→qearth,
−−−→vearth)}, where q

denotes coordinate vector and v denotes velocity vector .

The states change with time under the effect of gravitational force.



In quantum mechanics, the states of a system correspond to a vector space called
Hilbert Space. When we come across the term Hilbert space in quantum mechanics, it
refers to the space of states.



Interlude: Hilbert Space and Bra-ket Notation



ket
A ket (e.g. |A⟩) represents a vector in Hilbert space.

bra
For every ket-vector |A⟩, there is a “bra” vector in the dual space, denoted by ⟨A|
which is the Hermitian conjugate of the ket with the same label.

Hermitian conjugate is a generalized concept of conjugate transpose of matrices,
which first transpose a matrix then take the complex conjugate of each entry.

Inner Product
The inner product is the product of a bra and a ket and it is written as ⟨B|A⟩.



The following are the axioms that define a Hilbert space of a quantum system (z and w are
complex numbers):

1. The sum of any two ket-vectors is also a ket-vector: |A⟩+ |B⟩ = |C⟩.
2. Vector addition is commutative: |A⟩+ |B⟩ = |B⟩+ |A⟩.
3. Vector addition is associative: {|A⟩+ |B⟩}+ |C⟩ = |A⟩+ {|B⟩+ |C⟩}.
4. There is a unique vector 0 such that when you add it to any ket, it gives the same ket

back: |A⟩+ 0 = |A⟩.
5. Given any ket |A⟩, there is a unique ket − |A⟩ such that |A⟩+ |−A⟩ = 0.
6. Given any ket |A⟩ and any complex number z, you can multiply them to get a new ket.

Also, multiplication by a scalar is linear: |zA⟩ = z |A⟩ = |B⟩.
7. The distributive property holds: z{|A⟩+ |B⟩} = z |A⟩+ z |B⟩, {z + w} |A⟩ = z |A⟩+ w |A⟩.



Q2: How do quantum mechnical states change with time?



A quantum system evolves in two ways: the system evolves one way between
measurements (undisturbed quantum mechanical system) and another way during a
measurement.

Let’s first derive the laws governing undisturbed quantum mechanical evolution.



What are required to be a properly formulated law?
▶ Determinism: wherever you are in the state-space, the next state is completely

specified by the law of motion.
▶ Reversibility: the law must tell you where you were last.



Suppose state S0 · · ·
∆t−→ · · · St, we represent this as U∆t(S0) = St.

Reversibility requires that ∃V∆t such that V∆t(St) = S0. Therefore,
V∆t(U∆t(S0)) = S0.

In other words, the operator V∆tU∆t behaves like the unit operator I, where I(S) = S
for any state S. In quantum mechanics, V∆t = U†

∆t, where the dagger † indicates
Hermitian conjugation. Thus, U†

∆tU∆t = I.

An operator U that satisfies U†U = I is called unitary.



Now let’s consider ∆t = ϵ, where ϵ is an infinitesimal time interval. When ϵ is zero,
Uϵ = I.

Continuity of state transition implies that when ϵ is infinitesimal, Uϵ is close to I,
differing from it by something of order ϵ.

Uϵ = I + ϵG

With an eye toward the future, we let G = −iH. Then, Uϵ = I − iϵH and
U†
ϵ = I + iϵH†. Thus, I = U†U = (I + iϵH†)(I − iϵH).

Expanding to first order in ϵ, we get H† = H. This indicates that H is a unitary
operator.



Sϵ = Uϵ(S0) = S0 − iϵH(S0), thus

Sϵ − S0
ϵ

= −iH(S0).

If we take the limit as ϵ→ 0, the left-hand side becomes the time derivative of the
state:

∂S
∂t = −iHS.

Recall that the state of a system is a ket vector in a Hilbert space. Now we denote the
state by |Ψ⟩. With the new symbol, we rewrite the above equation:

∂ |Ψ⟩
∂t = −iH |Ψ⟩ .



In an abstract way, we have defined an equation to describe a quantum mechanical
system with a unitary operator H. What is H?

It turns out that H has real physical meaning. It represents the energy operator and is
usually called Hamiltonian operator.



Back to physics, the time-dependent Schrödinger equation needs to be polished a little
bit to make it actually work for real-world physics.

To make the equation dimensionally consistent, we need to insert a constant with
dimension mass · length2/time. The constant turns out to be ℏ with value
1.054572 × 10−34m2kg/s when we apply the equation to describe a real quantum
system.

ℏ
∂ |Ψ⟩
∂t = −iH |Ψ⟩

or
iℏ∂ |Ψ⟩

∂t = H |Ψ⟩

This equation is called general time-dependent Schrödinger equation.



Interpretation of Ψ

The Schrödinger equation details the behavior of Ψ but says nothing of its nature.

In 1926, Max Born successfully interpreted Ψ as the probability amplitude, whose
modulus sequared |Ψ|2 is equal to probability density.

∫ ∞

−∞
|Ψ(x)|2 dx = 1.
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“Concretized” Hamiltonian

The Hamitonian is the sum of the kinetic energies plus the potential energy for all
the particles. Hamitonian H is an operator, sometimes denoted by Ĥ to highlight its
function as an operator.

One Particle

Ĥ = T̂ + V̂ = −
ℏ2

2m
∇2 + V(r, t),

Many Particles

Ĥ =
N∑

n=1
T̂n + V̂ = −

ℏ2

2

N∑
n=1

1
mn

∇2
n + V(r1, r2, . . . , rN, t),

where r and r1, r2, . . . , rN are spatial coordinates.



Schrödinger equation for an n-particle system

iℏ ∂
∂t

Ψ(r1, r2, . . . , rN, t) =
[
−
ℏ2

2

N∑
n=1

1
mn

∇2
n + V(r1, r2, . . . , rN, t)

]
Ψ(r1, r2, . . . , rN, t)

n = 1

iℏ ∂
∂t

Ψ(r, t) =
[
−ℏ2

2m
∇2 + V(r, t)

]
Ψ(r, t)



3. Time-independent Schrödinger Equation



If the Hamiltonian is not an explicit function of time, then

Ĥ = −ℏ2

2

N∑
n=1

1
mn

∇2
n + V(r1, r2, . . . , rN).

We now restrict ourselves to looking for the solutions that take the following form:

Ψ(r1, r2, . . . , rN, t) = ψ(r1, r2, . . . , rN)f(t) ,

where f(t) is a function of time only.

Note: not all solutions have this form.



Letting ψ = ψ(r1, r2, . . . , rN) and V = V(r1, r2, . . . , rN) and substituting into the
time-dependent equation give

iℏ ∂
∂tψf(t) =

[
−ℏ2

2

N∑
n=1

1
mn

∇2
n + V

]
ψf(t)

iℏdf(t)
dt ψ = −ℏ2

2 f(t)
N∑

n=1

1
mn

∇2
nψ + Vf(t)ψ

iℏ 1
f(t)

df(t)
dt = −ℏ2

2
1
ψ

N∑
n=1

1
mn

∇2
nψ + V

Since the left side is independent of r1, r2, . . . , rN and the right side is independent of
t, both sides must be equal to a constant, which we call E.



Equating the right side of the blue equation to E, we get

−ℏ2

2
1
ψ

N∑
n=1

1
mn

∇2
nψ + V = E

−ℏ2

2

N∑
n=1

1
mn

∇2
nψ + Vψ = Eψ

Ĥψ = Eψ

This is the time-independent Schrödinger equation.
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Equating the left side of the blue equation to E, we get

iℏ 1
f(t)

df(t)
dt = E

1
f(t)

df(t)
dt = − iE

ℏ

ln f(t) = − iE
ℏ

t + C

f(t) = eCe−iEt/ℏ



Thus,
Ψ(r1, r2, . . . , rN, t) = ψf(t) = eCψe−iEt/ℏ = Aψe−iEt/ℏ,

where A = eC.



|Ψ(r1, r2, . . . , rN, t)|2 = [Aψe−iEt/ℏ]∗Aψe−iEt/ℏ

= A∗ψ∗eiEt/ℏAψe−iEt/ℏ

= A∗ψ∗Aψ
= |Aψ|2

= |Aψ(r1, r2, . . . , rN)|2

The probability density is given by |Aψ(r1, r2, . . . , rN)|2 and does not change with time.
Such states are called stationary states.



A quantum system evolves in two ways: the system evolves one way between
measurements (undisturbed quantum mechanical system) and another way during a
measurement.



4. Unsolved Mystery: Measurement



Combining systems and entanglement

Every measurement involves a system and an apparatus. If quantum mechanics is a
consistent theory, then it should be possible to combine the system and apparatus into
a single bigger system. In this single bigger system, no collapse of the wave function
takes place during a measurement. Instead, entanglement between the apparatus and
the system just happens by unitary evolution of the state-vector.



Combining systems and entanglement

Does the last entity to look at the system collapse the wave function, or does it just
get entangled? Or is there a last looker? We don’t know the answers to these
questions (yet).

Quantum mechanics is a consistent calculus of probabilities for a certain kind of
experiment involving a system and an apparatus. We use it, and it works, but when we
try to ask questions about the underlying “reality”, we get confused.



Richard Feynman
Nature has got it cooked up so we’ll never be able to figure out how She does it: if we
put instruments in to find out which way the light goes, we can find out, all right, but
the wonderful interference effects disappear. But if we don’t have instruments that can
tell which way the light goes, the interference effects come back! Very strange, indeed!



5. Quantum Molecular Dynamics



Interlude

F = −∇V

Coulomb’s law for the magnitude of the force between two charges Q1 and Q2
separated by a distance r in vacuum is:

F =
Q1Q2
4πϵ0r2 ,

where ϵ0 is a constant called the vacuum permittivity whose value is
8.8541878 × 10−12C2N−1m−2.



The “hello world” problem

Proton

Electron

r

Simplified Hydrogen Atom
Assume the proton’s position is fixed at the origin, r is the vector specifying the
position of the electron relative to the position of the proton. |r| = r. The mass of the
proton is M, the mass of the electron is m.



The “hello world” problem

The Coulomb force on the electron is

F = − e2

4πϵ0r2
r
r

F = −∇V ⇒ dV
dr = −F =

e2

4πϵ0r2

V =
e2

4πϵ0

∫ 1
r2 = − e2

4πϵ0r



The “hello world” equation

The Schrödinger equation for the electron

Ĥψ = Eψ

Eψ = Ĥψ =

[
− ℏ2

2m∇2 − e2

4πε0r

]
ψ

A more accurate model should replace m with the reduced mass µ of the two-particle
system.

µ =
mM

m + M ≈ m when M ≫ m



Expanding the Laplacian in spherical coordinates:

−
ℏ2

2m

[ 1
r2
∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂ϕ2

]
−

e2

4πϵ0r
ψ = Eψ

This is a separable, partial differential equation which can be solved in terms of special functions.

ψnℓm(r, θ, ϕ) =

√( 2
na0

)3 (n − ℓ− 1)!
2n[(n + ℓ)!]

( 2r
na0

)ℓ

e−r/na0 L2ℓ+1
n−ℓ−1

( 2r
na0

)
Ym
ℓ (θ, ϕ),

where a0 = 4πϵ0ℏ2

me2 , L2ℓ+1
n−ℓ−1(· · · ) is the generalized Laguerre polynomial of degree n − ℓ− 1, Ym

ℓ (θ, ϕ) is a
spherical harmonic function of degree ℓ and order m.

The numbers n, ℓ and m are called quantum numbers. They can take the following values:

n = 1, 2, 3, . . .
ℓ = 0, 1, 2, . . . , n − 1

m = −ℓ, . . . , ℓ



Why don’t electrons fall into the nucleus?

The question actually doesn’t make sense.

Electrons in the atom do enter the nucleus. All electron states overlap with the
nucleus, so the concept of an electron ”falling into” or ”entering” the nucleus does not
really make sense. Electrons are always partially in the nucleus.









Simulating quantum many-body system

Suppose we have a quantum many-body system with
▶ N atoms (nuclei) at positions R = {R1, · · · ,RN} with instantaneous momenta

P = {P1, · · · ,PN} and
▶ Ne electrons at r = {r1, · · · , rNe}.



General Molecular System

For a general molecular system consisting of electrons and nuclei, the Hamiltonian can
be written as

H(r,R) = TN + He(r) + VeN(r,R),

where TN represents nuclear kinetic energy operators, He is the electronic Hamiltonian
and VeN(r,R) includes all the electron-nuclear and nuclear-nuclear interactions. The
electronic Hamiltonian He can be written as

He(r) = Te + Vee,

where Te represents electron kinetic energy operators and Vee includes all
electron-electron interactions. Here, we use r and R as collective indexes to denote,
respectively, the coordindates of the electrons and nuclei.



General Molecular System

If all the nuclei were fixed in space (R fixed), then the motions of electrons would be
governed by the following Hamiltonian equation

[He(r) + VeN(r,R)]ψn(r,R) = ϵn(R)ψn(r,R),

where ψn(r,R) and ϵn(R) are called adiabatic eigenfunctions and eigenvalues of the
electrons with the fixed nuclear coordinates R as parameters.



Born-Oppenheimer Approximiation

It is the assumption that the motion of atomic nuclei and electrons in a molecule can
be treated separately.

The approach is named after Max Born and J. Robert Oppenheimer who proposed it in
1927.



1. First, for fixed nuclear positions R(t) at a time t, we perform a quantum
mechanical calculation for the electrons. From the resulting electronic wave
function Ψ(r,R), which depends only parametrically on the nuclear positions R,
we determine a force on each atom.

2. Second, using this quantal force, we advance the nuclei over a short time δt by
the classical equations of motion, yielding a new set of positions R(t + δt) and
momenta P(t + δt) for the nuclei.

We calculate the electronic many-body wave function Ψ(r,R) by solving the
Schrödinger equation: ĤΨ(r,R) = EΨ(r,R), where the Hamiltonian operator Ĥ has
the form Ĥ = Te + Vee + VeN + VNN. Te represents the kinetic energy of the electrons.
Vee, VeN, and VNN are the potential energy term for the interaction between the
electrons, the electrons and the nuclei, and the nuclei.



6. Ending: what is the physics describing reality?



Does light travel in straight line?

As we push the blocks closer together, at a certain point, the detector at Q starts
clicking!



In quantum mechanics the uncertainty principle tells us that the energy can fluctuate
wildly over a small interval of time. According to special relativity, energy can be
converted into mass and vice versa. With quantum mechanics and special relativity,
the wildly fluctuating energy can metamorphose into mass, that is, into new particles
not previously present.

Ref: Quantum field theory in a nutshell.



Write down the Schrödinger equation for an electron scattering off a proton. The
equation describes the wave function of one electron, and no matter how you shake
and bake the mathematics of the partial differential equation, the electron you follow
will remain one electron. But special relativity tells us that energy can be converted to
matter: If the electron is energetic enough, an electron and a positron (“the
antielectron”) can be produced. The Schrödinger equation is simply incapable of
describing such a phenomenon. Nonrelativistic quantum mechanics must break down.

Ref: Quantum field theory in a nutshell.



Casimir effect

Two uncharged conductive plates are placed a few nanometers apart in a vacuum. In a classical
description, the lack of an external field means that there is no field between the plates and no
force between them.

When this field is instead studied using the quantum electrodynamic vacuum, it is seen that
the plates do affect the virtual photons which constitute the field, and generate a net force.



(As a result), quantum field theory was born of the necessity of dealing with the
marriage of special relativity and quantum mechanics, just as the new science of string
theory is being born of the necessity of dealing with the marriage of general relativity
and quantum mechanics.

Ref: Quantum field theory in a nutshell.



The ultimate theory for the reality? Nobody knows.
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