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Level 1 Goals

Mummy doesn’t have to worry about me not being able to understand Maxwell’s
equations anymore.

I can derive them in just 5 minutes.

Daddy doesn’t have to worry about me not being able to do rotations anymore.

| can now handle rotations in spaces of any dimensionality.



Level 2 Goals

Grasp the gist of geometric algebra and geometric calculus.

Appreciate the unifying, simplifying, and generalizing power of geometric algebra and
geometric calculus for describing physics in a very natural way.



Level 3 Goals

Use geometric algebra and geometric calculus to solve problems in Al for science with
the companion tool Geomeculus.



Vector Space R"

Let’s start with an n-dimensional vector space R" with an orthonormal basis denoted by
{e;,e,,---,e,}, where R is the set of real numbers.

An arbitrary vector expanded in terms of the orthonormal basis is given by

a=ae +axe,+---+aye,

where ay,as,...,a, € R.



Vector Space R"

A vector space is a set of vectors with two operations: associative and commutative
addition and distributive scalar multiplication.

» a+b =Db +a, commutative addition
> (a+b)+c=a+(b+c), associative addition
> a(b + ¢) = ab + ac, scalar multiplication is distributive w.r.t. addition

> (a+ b)c = ac + be, scalar multiplication is distributive w.r.t. addition



Extending R”" into an Algebra with a Product

Let’s define an associative product for the unit basis vectors:

+1,0 ifi=j,
€€ = e,

Let’s define the product for arbitrary vectors:

ab = (aje, +--- +aye,)(bie, +---+ b,e,)

= alblele] + a1b2e1e2 + -+ a,,bne,,en



Extending Vectors to Multivectors

R" can be extended into an algebra G" with elements called multivectors.

For example, an element of G can be written as:

ay+ a,€; + 4,8, + as€; + (1,€,€, + 13€,€5 + (1,;€,€5 + (11,;€,€,€;3
> q, is a scalar (0-vector)
> a,e +a,e, + ase, is a vector (1-vector)
> a,ee, +a;ees + ase.e; is a bivector (2-vector)

> a,,;e e.e; is a trivector (3-vector)



Extending Vectors to Multivectors

Every orthonormal basis in R” determines a standard basis for G".

A standard basis for G? is defined as:

1 basis for 0-vectors
€, e, e basis for 1-vectors
e e, €,e;, e,e; | basis for 2-vectors

e e,e; basis for 3-vectors




Extending Vectors to Multivectors

The standard basis for G*:

1

basis for 0-vectors

€, €, €;, €

basis for 1-vectors

€,6,, €,€;, €,€,, €,€;, €,€,, €;€,

basis for 2-vectors

€,6,€;, €,6,€,, €,€;€,4, €,€;€,

basis for 3-vectors

€ e,e;e,

basis for 4-vectors




Geometric Algebra

Geometric algebra G is a vector space with a product, called the geometric product.

The elements of G are multivectors. The geometric product of multivectors A and B
is written AB. Geometric algebra is closed under the geometric product, that is AB € G.



Geometric Algebra

For all scalars a (a € R) and multivectors A, B, and C:

» A+ B =B+ A, commutative addition.
> (A+ B)+ C = A+ (B+ C), associative addition.

» (AB)C = A(BC), associative multiplication.

» A(B+C)=AB+ AC, (A+ B)C = AC + BC, multiplication is distributive w.r.t.
addition.

» a(AB) = (aA)B = A(aB), scalars commute with multivectors.
> A+0=A,QO0isthe additive identity.
> 1A = Al = A, 1 is the multiplicative identity.



Notation

Lower case italic symbols denote scalars, e.g. a, b, . ..

Lower case bold symbols denote vectors, e.g. a, b, ...

vV v vy

Upper case italic symbols denote multivectors, e.g. A, B, ...

Lower case bold e with a subscript denotes orthonormal basis vectors, e.g. e,,e,, ...



Algebra Signature

> ee; = +1, positive square
> e,e; = —1, negative square

> e, = 0, zero square

Algebra signatures:
> GP%": G has a basis with p positive squares, g negative squares, r zero squares
» GP4 : G has a basis with p positive squares, g negative squares, 0 zero square

» G? : @G has a basis with p positive squares, 0 negative square, 0 zero square



The Companion Tool: Geomeculus

Geomeculus: A program for doing geometric algebra and Geometric Calculus

On Slides | In Code
Addition A+ B A+ B
Geometric Product AB AxB
Negation -A -1%A

We can execute commands interactively in Geomeculus, or we can run batched
commands using Geomeculus script files (.gmc).



Geomeculus Script

gmc script: samples/playground.gmc



Running Geomeculus Scripts



Running Geomeculus Scripts



Running Geomeculus Scripts




Running Geomeculus Scripts




Running Geomeculus Scripts




Geometric algebra is unifying, simplifying, and generalizing

> Number systems
o Complex numbers, quaternions
> Vector operations
o Inner product, outer product, cross product, angular momentum and torque
> Fields
o Magnetic field, electromagnetic field — Maxwell’s equations
> Geometric operations
o Rotations, projective geometry, conformal geometry, molecular geometry problem
» Quantum mechanics
o Pauli algebra, Dirac algebra, Schrodinger equation, Dirac equation



Complex Numbers

I= €€,
I = eeee, = —1
(a + bI)(c +dI) = (ac — bd) + (ad + bc)l

e = cosO + I'sinf

The complex number system is isomorphic to the subalgebra with form a + b1 of G2,

gmc script: samples/complex.gmc



Complex Numbers

Rotate a vector by 6 in the “complex
plane” with {1, e e,} as axes:

€€

N

Rotate a vector by 6 in the plane
with {e,, e,} as axes:

(e, +e)exp@l) =—-1xe +e,

€,

L

In the example, 0 = §
gmc script: samples/complex.gmc



Quaternions

1= e e,, 12 = _1
J=ee, JF=-1
K = e e;, K2 = _1

1JK = e e,e,esee; = —1

(cz+bI+cJ+dK)(a—bI—cJ—a’K):az+b2+c2+d2

Multivectors of forma + b1+ ¢ J + d K are isomorphic to quaternions.

gmc script: samples/quaternion.gmc



Inner Product of Vectors

For all vectors a and b in R”,
1
a-b= E(ab + ba).

gmc script: samples/inner-product.gmc



Outer Product of Vectors

For all vectors a and b in R”,
1
aAb= i(ab—ba).

gmc script: samples/outer-product.gmc



Geometric Product of Vectors

For all vectors a and b in R”,
1
a-b= 5(ab+ba)

1
a/\bzi(ab—ba)

ab=a-b+aAb



Cross Product of Vectors

I =eeye;

a=v,e +vp,pe, +v;e;

b =v,e +vye, +vue;
anb = vy —viova)ee + (Vv —visvy) €€ + (Viovas — VizVy) €,€5
axXb= (v vy —vipvy)e; — (Vivos — Visva) € + (ViaVs — Visva) €
axb=-I(aAnb) or aAb=I(axb)

gmc script: samples/cross-product.gmc



Angular Momentum and Torque

L=rxp T=rXxF
L=rAp 7T=rAF

where L is the angular momentum, 7 is the torque, r is the position vector, and p is the
momentum vector.



Magnetic Field

I = €,6,e;
B=bl=1Ib

where b is the magnetic field vector, and B is the magnetic bivector field orthogonal to b.

gmc script: samples/magnetic.gmc



Magnetic Field

I =eee;
B=bl/=1Ib

where b is the magnetic field vector, and B is the magnetic bivector field orthogonal to b.

gmc script: samples/magnetic.gmc



Extending Partial Derivative to Multivector-valued Functions

Let F: U CR"™ — G", where U is open. Let x € U have coordinates (x,, ..., x,) with
respect to an orthonormal basis {e,, ..., e,}. Then the partial derivative of F with
respect to x; is

0F(x) . Fx+he) - F(x) . F(x,x,....x:+h,...,x,) — F(X)
= lim = lim .
ox; h—0 h h—0 h

(M

We will often abbreviate this as J;F.

Aset U CR" is open if every point x € U has a neighborhood contained in U.



Gradient

Let F be a differentiable multivector function defined on an open set U C R". Let {e;} be
an orthonormal basis for R*. Then the gradient of F is defined by

VF(x) = ¢0,F(x) = ¢,0,F(X) + 0, F(X) + - - - + ¢,0,F(X). (2)

The product in e;0,F(x) is the geometric product.

Magic trick: algebraically, V behaves like a vector, and d; behaves like a scalar.

VF=V-F+VAF
8i0;F = 0,0;F

Ref: Vector and geometric calculus, A. Macdonald



Maxwell’s Equations

Maxwell’s equation in geometric calculus (natural units):

VF=p-].

F=e+B

0
V: a_t +V =3t+elal +6282+e333
p : charge density, scalar

J : current density, vector

The electric vector field e and the magnetic bivector field B are combined into a single
multivector field F.



Maxwell’s Equations

VF=p-1]



Maxwell’s Equations

VF=p-1]

0
(5 + VB =p-1J



Maxwell’s Equations
VF=p-1]

0
(5 + VB =p-1J

((%+V)(e+1b)=p—J

1 =eee;



Maxwell’s Equations

VF=p-1]
0
(E+V)(e+B)_p—J
0
(a—t+V)(e+1b)_p—J

0 0
Ee+Ve+15b+IVb=p—J

1 =eee;



Maxwell’s Equations

VF=p-1]
(£+V)(e+B)— -J
ot -
0
(a—t+V)(e+1b)=p—J

0 0
Ee+Ve+15b+IVb:p—J
0 7]

_ . _- V- = p—
ate+V e+V/\e+Iatb+I b+IVAb=p-]

1 =eee;



Maxwell’s Equations

VF=p-1]

(2+V)(e+B)— -J

ot -

0

(E+V)(e+1b)=p—J
0 0
Ee+Ve+1Eb+IVb:p—J
0 7]
Ee+V-e+V/\e+1Eb+IV-b+IV/\b=p—J

o 0
V-e+Ee+IVAb+VAe+Iab+IV-b:p—J

1 =e ee;



Maxwell’s Equations

0 0
V-e+6—te+IV/\b+V/\e+Ia—tb+IV-b=p—J



Maxwell’s Equations

0 0
V-e+6—te+IV/\b+V/\e+Ia—tb+IV-b=p—J

V-e=p



Maxwell’s Equations

0 0
V-e+—e+IVAb+VAe+I—b+IV-b=p-
e me e o p—J
V-e=p

2e+IV/\b:—J
ot



Maxwell’s Equations

0 0
V-e+—e+IVAb+VAe+I—b+IV-b=p-
e me e o p—J
V-e=p

2e+IV/\b:—J
ot

V/\e+12b=0
ot



Maxwell’s Equations

0 0
. — VA VA I—b+IV-b=p-
\% e+8te+1 b + e+ 8tb+ b=p-J
V-e=p
2e+IV/\b:—J
ot
V/\e+12b=0
ot
IV-b=0



Maxwell’s Equations

V-e=p

2e+IV/\b=—J
ot

VAe+12b=O
ot

IV-b=0



Maxwell’s Equations

V-e=p V-e=p
2e+IV/\b=—J —IV/\b=2e+J
ot ot

P = P
VAe+I—b=0 VAe=-I—b

ot ot

IV-b=0 V-b=0



Maxwell’s Equations

V-e=p V-e=p
2e+IV/\b=—J —IV/\b=2e+J
ot ot

P = P
VAe+I—b=0 VAe=-I—b

ot ot

IV-b=0 V-b=0



Maxwell’s Equations

Vee=p
0
VXb:ae+J
0
Vxe=—-—b

V-b=0



Maxwell’s Equations

V-e:p VE:p
E
be:ge+J V><B:8—+J
ot ot
Vxe——ab - VxE——aB
Y Y
V-b=0 V-B=0

Change symbols to E and B for electric and magnetic fields.



Maxwell’s Equations

V-E=p
V><B=@+J
ot
0B
VXE =—-——
ot
V-B=0

Ref: Units in electrodynamics, Randy S



Maxwell’s Equations

P
V.E=p V-E—g—o
oE JE
VXBZE'FJ VXB=puJ+e—)
ot
oxp. OB = oB
> VxE=-%
V.-B=0 V-B=0

From natural units to Sl units (c*gou, = 1).

Ref: Units in electrodynamics, Randy S



Maxwell’s Equation

VF=p-]



An “Object-Oriented” Approach to Geometry

We can represent geometric entities as “objects” that can be manipulated in a
coordinate-free manner.

This can be well demonstrated by doing rotations using geometric algebra.



Rotation

Rotate a vector v by twice the angle between a and b.

R =ab
R" =ba
v = R'VR

gmc script: samples/rotation.gmc



Rotation

Rotate a vector v by twice the angle between a and b.

R =ab
R" =ba
v = R'VR
’ V,
Vi = —
R'R

gmc script: samples/rotation.gmc



Rotation

Rotate a vector v by twice the specified angle in the plane P, specified by a bivector.

R=elP
RT = o3P
v = RTVR

gmc script: samples/rotation.gmc



Solving Geometric Problem in Higher Dimension

The problem can sometimes be more intuively solved in a higher dimension.
» Solving 3D problems in 4D
» Solving 3D problems in 5D
» Solving 3D problems in 15D

Geometric algebra provides a unified framework for solving problems in higher
dimensions.



Projective Geometric Algebra

Let’s represent a 3D point with a 4D vector in G>!.

A line L passing through two points p and ¢ is represented by the outer product of their
corresponding vectors:
L=pArq

A plane P containing three points p, g, and r is represented by the outer product of their
corresponding vectors:
P=pAqATr



Projective Geometric Algebra

Let I be e,e,e;e,. The intersection of a line L and a plane P is represented by:

P-(IL)

The intersection of two planes P and Q is represented by:

(Ip)-Q

gmc script: samples/projective.gmc
Ref: Geometric algebra for physicists, C. Doran, A. Lasenby



Conformal Geometric Algebra
A 5D conformal geometric algebra can be defined out of G*!:

1
eo = E(_eéi + eS)

Points, planes, and spheres can be rep-
resented by linear combinations of the
I=e ANe,ANe;Ae. Ae, basis vectors: e, e,, €5, €,, €.

1
€. = E(e4 + eS)

1_1=e(,/\em/\e3/\e2/\e1

gmc script: samples/conformal.gmc
Foundations of geometric algebra computing, Dietmar Hildenbrand



Molecular Distance Geometry Problem

It is to determine a three-dimensional structure of a molecule given an incomplete set of
interatomic distances. We can solve the problem based on calculating the intersection
points of three spheres in G*!.

P = Vi€ +Vp€ +V;3€;
1
Pi=Pi+§pinew+eo
S, =P 1dde
i — b 2 i%i Yoo

Q=—(S, AS; ASHI!
T=-=VQ-Q+Q. Q'

gmc script: samples/molecular-distance-geometry.gmc
The power of geometric algebra computing, Dietmar Hildenbrand



Higher Dimensional Geometric Algebra

> Conics in R? can be represented with G>3 or G%2
> Cubic Curves can be handled with G*2 or G*#

» Quadric surfaces can be represented and constructed intuitively in G*%

Ref: Quadric conformal geometric algebra of R%, Stéphane Breuils et al.



Determinant of Linear Transformation

Let f be a linear transformation on R" and v, v,,...,V, be vectors in R". Then

FOOIAFV) AN A Sf(v,) =det(F)(Vi AV, AL..AY,)

The determinant of a linear transformation f on R" is the factor by which the
transformation scales the oriented volumes of n-dimensional parallelograms.

gmc script: samples/determinant.gmc
Vector and geometric calculus, A. Macdonald



Pauli Algebra

o=

1
0

-1

| x| oy oy o, | [ x] e e, e,
Ox I io, | —ioy e 1 le; | —Ie,
oy | —io, I 10 e, | —Ie 1 le,
o, | ioy | —ioy I e, | le, | —Ie 1

|

where i is the imaginary unit, I = e e,e;, and I is the identity matrix. The Pauli algebra
generated by three spin operators oy, oy, and o, is isomorphic to the geometric algebra

G

gmc script: samples/pauli.gmc



Dirac Algebra

— o O O

o — O O

—

o oo
—_ o O O

S OO -

—

~

f oo o
o ~o o

S o~ O

where i is the imaginary unit.



Dirac Algebra

X Y Y Y Y X €y € e, €;
YWl e | 1

y! -1 e -1

y? -1 e ~1

% | e -1

where L is the identity matrix. The algebra generated by %, ', ¥, and y? is isomorphic
to the geometric algebra G!-3.

gmc script: samples/dirac.gmc



Dirac Equation for Hydrogen in G'-3
2

Ze
Vyee, - m‘/’ + megye, = Ey,

where e is the elementary charge, Z is the atomic number, m is the mass of the electron,
r is the distance from the nucleus, and E is the energy.

The equation and its observables are in real algebra of spacetime, with no need for
complex numbers.

Ref: Geometric algebra for physicists, C. Doran, A. Lasenby



Manifold

Here we use the term manifold a bit loosely, referring to an m-dimensional object M
that can be locally parametrized by a set of coordinates. The general parameterization of
an m-dimensional manifold M in R", m < n is given by

X(ulau2""’um) = X[(M],uz,...,u,”)e,', l= 1’29""”'

We will call 1-dimensional manifolds curves, 2-dimensional manifolds surfaces, and
3-dimensional manifolds solids.



Tangent Space

There is a tangent space at every point of a manifold.



Tangent Space for 1-Dimensional Manifold

Letx:ACR! > CCR" parameterize a curve C. Fix t € A and let p = x(?). The vector
x'(1), and its scalar multiples, are called tangent vectors to the curve C at p. This 1D
span of X'(7) is called the tangent space to C at p. Denote it Tp.

Ref: Vector and geometric calculus, A. Macdonald



Tangent Space for 2-Dimensional Manifold

Letx : A CR? — § C R" parameterize a surface S. Fix q € A and w € R?. Let p = x(q).

Hox(q) = }1113(1) x(q + hvlz) - X(q). 3)

The vector dwx(q) is the directional derivative of x at q in the direction of w. The
vector is a tangent vector to the surface S at p. The set of all tangent vectors to S at p is
a vector space. It is called the tangent space to S at p. Denote it 7.

Ref: Vector and geometric calculus, A. Macdonald



Tangent Space for m-Dimensional Manifold

The vectors tangent to an m-dimensional manifold M, which is parameterized by
x(u,v,--+), at a point p € M form the tangent space to M at p, which is an
m-dimensional vector space Tp.

Theorem
{X,,X,, - } forms a basis for the tangent space to M at p, where x,, = ax('g:"“).

Ref: Vector and geometric calculus, A. Macdonald



Reciprocal Basis

A reciprocal basis {x%,x", - -} can always be constructed for a basis {x,, X, - - }.

y 1 ifu=v,
X' x, =
‘ 0 ifu+#w.

Ref: Vector and geometric calculus, A. Macdonald



Vector Derivative

Let F' be a multivector valued function defined on a manifold M, which is parameterized
by x(u,v,---). Let {x,,X,, -} be a basis for the tangent space T at p € M and
{x“,x",---} be the reciprocal basis. Then the vector derivative 0F(x) = F (x(u,v,---))
is

< O0F(x) ey OF(x) L

- =x"0F +x"0,F + -
ou ov " Y

OF(x(u,v,--+)) =




Vector Derivative

X(vi,v) =vie +v,e + (V12 + sz) €;
F =, +1)log(v))
0F(1,0) =0.2e, + 0.4e,

gmc script: samples/basin.gmc



Fundamental Theorem of Geometric Calculus

Let M be an m-dimensional bounded oriented manifold in some R” (n > m) with
boundary dM, and let F on M U dM be continuously differentiable on M and continuous

on M UOM, then
f d"x0F = f d™xF
M oM

The boundary dM of M is a manifold of dimension m — 1.

Vector and geometric calculus, A. Macdonald



Fundamental Theorem of Geometric Calculus

A boundary has no boundary: d(0M) = 0. We can use 9§ to signify this:

vector derivative of F/ directed integral

m _ m—1
f md"x OF = 56 oM d"'xF
infinitesimal m-vector in tangent space I boundary of M

Here, d"x = I,,d"x, where I,, = I,,(x) is the unit m-vector of the tangent space to M at x,
and d"x is the infinitesimal m-volume, which is an infinitesimal scalar.

Vector and geometric calculus, A. Macdonald



Directed Integral

Suppose manifold M is parameterized by x(u;, u,, ..., u,) : A CR™ — M c R". Then the
directed integral of F' over M is

f d"x F = f‘(xu1 AXy, Ao A%, )F(X)dA
M A

Vector and geometric calculus, A. Macdonald



Fundamental Theorem of Geometric Calculus

x(0, @) = sin(f) cos(¢)e, + sin() sin(¢)e, + cos(H)e;
F = cos(0)

fd"‘xaF:f d™IxF =0
M oM

gmc script: samples/hemisphere.gmc



Applying Fundamental Theorem to 3D Electronic Structure Problem?

» Suppose the electronic structure is a 3D
manifold M.

> Assume the chemical property of interest is a
function F on M.

> With carefully designed parametric F and M,
we can apply the fundamental theorem to solve
the electronic structure problems in 2D or 4D.
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Epilogue

Computational Considerations

> Matrix representation vs geometric algebra

> The power of symbolic simplification



Matrix Representation vs Geometric Algebra

The total dimension of G4 is 2", where n = p + g. If we want to create a matrix
representation of the algebra, the matrices will be of the order of 2""/% x 2"/2,

For example, the matrix representation of Dirac algebra G'* requires 4 x 4 matrices.

Don’t be confuse the matrix representation of an algebra with organizing the elements
of the algebra in a matrix form.

N-dimensional rigid body dynamics, Marc ten Bosch
Geometric algebra for physicists, C. Doran, A. Lasenby



The Power of Symbolic Simplification: A Case Study

Calculating Hermite coefficients is one of the performance bottlenecks when we
implement density functional theory using the McMurchie-Davidson integral scheme.

Histogram of Reduction Ratios Cumulative Histogram of Reduction Ratios
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The arithmetic OP counts of over 93% of the Hermite coefficients calculations are reduced to 15%!



The End



