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Level 1 Goals

Mummy doesn’t have to worry about me not being able to understand Maxwell’s
equations anymore.

I can derive them in just 5 minutes.

Daddy doesn’t have to worry about me not being able to do rotations anymore.

I can now handle rotations in spaces of any dimensionality.



Level 2 Goals

Grasp the gist of geometric algebra and geometric calculus.

Appreciate the unifying, simplifying, and generalizing power of geometric algebra and
geometric calculus for describing physics in a very natural way.



Level 3 Goals

Use geometric algebra and geometric calculus to solve problems in science with the
companion tool Geomeculus.



Vector Space Rn

Let’s start with an n-dimensional vector space Rn with an orthonormal basis denoted by
{e1, e2, · · · , en}, where R is the set of real numbers.

An arbitrary vector expanded in terms of the orthonormal basis is given by

a = a1e1 + a2e2 + · · · + anen,

where a1, a2, . . . , an ∈ R.



Vector Space Rn

A vector space is a set of vectors with two operations: associative and commutative
addition and distributive scalar multiplication.

▶ a + b = b + a, commutative addition
▶ (a + b) + c = a + (b + c), associative addition
▶ a(b + c) = ab + ac, scalar multiplication is distributive w.r.t. addition
▶ (a + b)c = ac + bc, scalar multiplication is distributive w.r.t. addition



Extending Rn into an Algebra with a Product

Let’s define an associative product for the unit basis vectors:

eie j =

±1, 0 if i = j,
−e jei if i , j.

Let’s define the product for arbitrary vectors:

ab = (a1e1 + · · · + anen)(b1e1 + · · · + bnen)

= a1b1e1e1 + a1b2e1e2 + · · · + anbnenen



Extending Vectors to Multivectors

Rn can be extended into an algebra Gn with elements called multivectors.

For example, an element of G3 can be written as:

a0 + a1 e1 + a2 e2 + a3 e3 + a12 e1e2 + a13 e1e3 + a23 e2e3 + a123 e1e2e3

▶ a0 is a scalar (0-vector)
▶ a1 e1 + a2 e2 + a3 e3 is a vector (1-vector)
▶ a12 e1e2 + a13 e1e3 + a23 e2e3 is a bivector (2-vector)
▶ a123 e1e2e3 is a trivector (3-vector)



Extending Vectors to Multivectors

Every orthonormal basis in Rn determines a standard basis for Gn.

A standard basis for G3 is defined as:

1 basis for 0-vectors
e1, e2, e3 basis for 1-vectors

e1e2, e1e3, e2e3 basis for 2-vectors
e1e2e3 basis for 3-vectors



Extending Vectors to Multivectors

The standard basis for G4:

1 basis for 0-vectors
e1, e2, e3, e4 basis for 1-vectors

e1e2, e1e3, e1e4, e2e3, e2e4, e3e4 basis for 2-vectors
e1e2e3, e1e2e4, e1e3e4, e2e3e4 basis for 3-vectors

e1e2e3e4 basis for 4-vectors



Geometric Algebra

Geometric algebra G is a vector space with a product, called the geometric product.

The elements of G are multivectors. The geometric product of multivectors A and B
is written AB. Geometric algebra is closed under the geometric product, that is AB ∈ G.



Geometric Algebra

For all scalars a (a ∈ R) and multivectors A, B, and C:

▶ A + B = B + A, commutative addition.
▶ (A + B) +C = A + (B +C), associative addition.

▶ (AB)C = A(BC), associative multiplication.
▶ A(B +C) = AB + AC, (A + B)C = AC + BC, multiplication is distributive w.r.t.

addition.

▶ a(AB) = (aA)B = A(aB), scalars commute with multivectors.
▶ A + 0 = A, 0 is the additive identity.
▶ 1A = A1 = A, 1 is the multiplicative identity.



Notation

▶ Lower case italic symbols denote scalars, e.g. a, b, . . .
▶ Lower case bold symbols denote vectors, e.g. a,b, . . .
▶ Lower case bold e with a subscript denotes orthonormal basis vectors, e.g. e1, e2, . . .

▶ Upper case italic symbols denote multivectors, e.g. A, B, . . .



Algebra Signature

▶ eiei = +1, positive square
▶ e je j = −1, negative square
▶ ekek = 0, zero square

Algebra signatures:
▶ Gp,q,r: G has a basis with p positive squares, q negative squares, r zero squares
▶ Gp,q : G has a basis with p positive squares, q negative squares, 0 zero square
▶ Gp : G has a basis with p positive squares, 0 negative square, 0 zero square



The Companion Tool: Geomeculus

Geomeculus: A program for doing geometric algebra and Geometric Calculus

On Slides In Code
Addition A + B A + B
Geometric Product AB A ∗ B
Negation −A −1 ∗ A

We can execute commands interactively in Geomeculus, or we can run batched
commands using Geomeculus script files (.gmc).



Geomeculus Script

algebra_signature 3,1
# unamed expression
e1 * e1
# named expression
F = e1 * e2
# expressions with scalar variables
a = v1 * e1 + v2 * e2 + v3 * e3
A = v11 * e1 + v12 * e2
B = v21 * e1 + v22 * e2
# named exprs can be referenced with $ prefix
C = $A * $B
# assign real number values to the variables
$C; v11=1; v12=2; v21=3; v22=4
# call built-in functions
exponential(0.5 * pi() * $F)

gmc script: samples/playground.gmc



Running Geomeculus Scripts

./build/release/bin/geomeculus samples/playground.gmc

./build/release/bin/geomeculus < samples/playground.gmc

cat samples/playground.gmc | ./build/release/bin/geomeculus

./build/release/bin/geomeculus
exec samples/playground.gmc

./build/release/bin/geomeculus --import samples/playground.gmc



Running Geomeculus Scripts
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./build/release/bin/geomeculus --import samples/playground.gmc



Running Geomeculus Scripts
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Running Geomeculus Scripts

./build/release/bin/geomeculus samples/playground.gmc

./build/release/bin/geomeculus < samples/playground.gmc

cat samples/playground.gmc | ./build/release/bin/geomeculus

./build/release/bin/geomeculus
exec samples/playground.gmc

./build/release/bin/geomeculus --import samples/playground.gmc



Running Geomeculus Scripts
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Geometric algebra is unifying, simplifying, and generalizing

▶ Number systems
◦ Complex numbers, quaternions

▶ Vector operations
◦ Inner product, outer product, cross product, angular momentum and torque

▶ Fields
◦ Magnetic field, electromagnetic field→Maxwell’s equations

▶ Geometric operations
◦ Rotations, projective geometry, conformal geometry, molecular geometry problem

▶ Quantum mechanics
◦ Pauli algebra, Dirac algebra, Schrödinger equation, Dirac equation

▶ · · · · · ·



Complex Numbers

I = e1e2

I2 = e1e2e1e2 = −1

(a + bI)(c + dI) = (ac − bd) + (ad + bc)I

eIθ = cos θ + I sin θ

The complex number system is isomorphic to the subalgebra with form a + bI of G2.

gmc script: samples/complex.gmc



Complex Numbers

Rotate a vector by θ in the “complex
plane” with {1, e1e2} as axes:

(1 + e1e2) exp(θI) = −1 + e1e2

1

e1e2

Rotate a vector by θ in the plane
with {e1, e2} as axes:

(e1 + e2) exp(θI) = −1 ∗ e1 + e2

e1

e2

In the example, θ = π
2

gmc script: samples/complex.gmc



Quaternions

I = e1e2, I2 = −1

J = e2e3, J2 = −1

K = e1e3, K2 = −1

IJK = e1e2e2e3e1e3 = −1

(a + b I + c J + d K) (a − b I − c J − d K) = a2 + b2 + c2 + d2

Multivectors of form a + b I + c J + d K are isomorphic to quaternions.

gmc script: samples/quaternion.gmc



Inner Product of Vectors

For all vectors a and b in Rn,

a · b = 1
2

(ab + ba).

gmc script: samples/inner-product.gmc



Outer Product of Vectors

For all vectors a and b in Rn,

a ∧ b =
1
2

(ab − ba).

gmc script: samples/outer-product.gmc



Geometric Product of Vectors

For all vectors a and b in Rn,

a · b = 1
2

(ab + ba)

a ∧ b =
1
2

(ab − ba)

ab = a · b + a ∧ b



Cross Product of Vectors

I = e1e2e3

a = v11e1 + v12e2 + v13e3

b = v21e1 + v22e2 + v23e3

a ∧ b = (v11v22 − v12v21) e1e2 + (v11v23 − v13v21) e1e3 + (v12v23 − v13v22) e2e3

a × b = (v11v22 − v12v21) e3 − (v11v23 − v13v21) e2 + (v12v23 − v13v22) e1

a × b = −I (a ∧ b) or a ∧ b = I (a × b)

gmc script: samples/cross-product.gmc



Angular Momentum and Torque

L = r × p τ = r × F

Alternatively, angular momentum and torque can be expressed as outer products:

L = −I (r ∧ p) τ = −I (r ∧ F)

where L is the angular momentum, τ is the torque, r is the position vector, p is the
momentum vector, and F is the force vector.



Magnetic Field

I = e1e2e3

B = bI = Ib

where b is the magnetic field vector, and B is the magnetic bivector field orthogonal to b.

gmc script: samples/magnetic.gmc



Magnetic Field

I = e1e2e3

B = bI = Ib

where b is the magnetic field vector, and B is the magnetic bivector field orthogonal to b.

gmc script: samples/magnetic.gmc



Extending Partial Derivative to Multivector-valued Functions

Let F : U ⊆ Rm → Gn, where U is open. Let x ∈ U have coordinates (x1, . . . , xm) with
respect to an orthonormal basis {e1, . . . , em}. Then the partial derivative of F with
respect to xi is

∂F(x)
∂xi

= lim
h→0

F(x + hei) − F(x)
h

= lim
h→0

F(x1e1 + x2e2 + · · · + (xi + h)ei + · · · + xmem) − F(x)
h

.

(1)
We will often abbreviate this as ∂iF.

A set U ⊆ Rn is open if every point x ∈ U has a neighborhood contained in U .



Gradient

Let F be a differentiable multivector function defined on an open set U ⊆ Rn. Let {ei} be
an orthonormal basis for Rn. Then the gradient of F is defined by

∇F(x) = ei∂iF(x) = e1∂1F(x) + e2∂2F(x) + · · · + en∂nF(x). (2)

The product in ei∂iF(x) is the geometric product.

Magic trick: algebraically, ∇ behaves like a vector, and ∂i behaves like a scalar.

∇F = ∇ · F + ∇ ∧ F

∂i∂jF = ∂j∂iF

Ref: Vector and geometric calculus, A. Macdonald



Maxwell’s Equations

Maxwell’s equation in geometric calculus (natural units):

∇F = ρ − J.

F = e + B

∇ = ∂

∂t
+ ∇ = ∂t + e1∂1 + e2∂2 + e3∂3

ρ : charge density, scalar

J : current density, vector

The electric vector field e and the magnetic bivector field B are combined into a single
multivector field F.



Maxwell’s Equations
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∂

∂t
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I = e1e2e3
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Maxwell’s Equations
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Maxwell’s Equations
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Maxwell’s Equations
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Ref: Units in electrodynamics, Randy S
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Maxwell’s Equation

∇F = ρ − J



An “Object-Oriented” Approach to Geometry

We can represent geometric entities as “objects” that can be manipulated in a
coordinate-free manner.

This can be well demonstrated by doing rotations using geometric algebra.



Rotation

Rotate a vector v by twice the angle between a and b.

R = ab

R† = ba

v′ = R†vR

v′′ =
v′

R†R

gmc script: samples/rotation.gmc



Rotation

Rotate a vector v by twice the angle between a and b.

R = ab

R† = ba

v′ = R†vR

v′′ =
v′

R†R

gmc script: samples/rotation.gmc



Rotation

Rotate a vector v by twice the specified angle in the plane P, specified by a bivector.

R = e
θ
2 P

R† = e−
θ
2 P

v′ = R†vR

gmc script: samples/rotation.gmc



Solving Geometric Problem in Higher Dimension

The problem can sometimes be more intuively solved in a higher dimension.
▶ Solving 3D problems in 4D
▶ Solving 3D problems in 5D
▶ Solving 3D problems in 15D

Geometric algebra provides a unified framework for solving problems in higher
dimensions.



Projective Geometric Algebra

Let’s represent a 3D point with a 4D vector in G3,1.

A line L passing through two points p and q is represented by the outer product of their
corresponding vectors:

L = p ∧ q

A plane P containing three points p, q, and r is represented by the outer product of their
corresponding vectors:

P = p ∧ q ∧ r



Projective Geometric Algebra

Let I be e1e2e3e4. The intersection of a line L and a plane P is represented by:

P · (I L)

The intersection of two planes P and Q is represented by:

(I P) · Q

gmc script: samples/projective.gmc
Ref: Geometric algebra for physicists, C. Doran, A. Lasenby



Conformal Geometric Algebra

A 5D conformal geometric algebra can be defined out of G4,1:

eo =
1
2

(−e4 + e5)

e∞ =
1
2

(e4 + e5)

I = e1 ∧ e2 ∧ e3 ∧ e∞ ∧ eo

I−1 = eo ∧ e∞ ∧ e3 ∧ e2 ∧ e1

Points, planes, and spheres can be rep-
resented by linear combinations of the
basis vectors: e1, e2, e3, eo, e∞.

gmc script: samples/conformal.gmc
Foundations of geometric algebra computing, Dietmar Hildenbrand



Molecular Distance Geometry Problem

It is to determine a three-dimensional structure of a molecule given an incomplete set of
interatomic distances. We can solve the problem based on calculating the intersection
points of three spheres in G4,1.

pi = vi1 e1 + vi2 e2 + vi3 e3

Pi = pi +
1
2

pi pi e∞ + eo

Si = Pi −
1
2

di di e∞

Q = −(S1 ∧ S2 ∧ S3) I−1

T = −(±
√
Q ·Q +Q) (e∞ ·Q)−1

gmc script: samples/molecular-distance-geometry.gmc
The power of geometric algebra computing, Dietmar Hildenbrand



Higher Dimensional Geometric Algebra

▶ Conics in R2 can be represented with G5,3 or G6,2

▶ Cubic Curves can be handled with G9,3 or G4,8

▶ Quadric surfaces can be represented and constructed intuitively in G9,6

Ref: Quadric conformal geometric algebra of R9,6, Stéphane Breuils et al.



Determinant of Linear Transformation

Let f be a linear transformation on Rn and v1, v2, . . . , vn be vectors in Rn. Then

f (v1) ∧ f (v2) ∧ . . . ∧ f (vn) = det( f )(v1 ∧ v2 ∧ . . . ∧ vn)

The determinant of a linear transformation f on Rn is the factor by which the
transformation scales the oriented volumes of n-dimensional parallelograms.

gmc script: samples/determinant.gmc
Vector and geometric calculus, A. Macdonald



Pauli Algebra

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
× σx σy σz

σx I iσz −iσy
σy −iσz I iσx
σz iσy −iσx I

× e1 e2 e3

e1 1 Ie3 −Ie2

e2 −Ie3 1 Ie1

e3 Ie2 −Ie1 1

where i is the imaginary unit, I = e1e2e3, and I is the identity matrix. The Pauli algebra
generated by three spin operators σx, σy, and σz is isomorphic to the geometric algebra
G3.

gmc script: samples/pauli.gmc



Dirac Algebra

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

, γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

,

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

, γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .
where i is the imaginary unit.



Dirac Algebra

× γ0 γ1 γ2 γ3

γ0 I

γ1 −I
γ2 −I
γ3 −I

× e0 e1 e2 e3

e0 1
e1 −1
e2 −1
e3 −1

where I is the identity matrix. The algebra generated by γ0, γ1, γ2, and γ3 is isomorphic
to the geometric algebra G1,3.

gmc script: samples/dirac.gmc



Dirac Equation for Hydrogen in G1,3

∇ψe1e2 −
Ze2

4πr
ψ + me0ψe0 = Eψ,

where e is the elementary charge, Z is the atomic number, m is the mass of the electron,
r is the distance from the nucleus, and E is the energy.

The equation and its observables are in real algebra of spacetime, with no need for
complex numbers.

Ref: Geometric algebra for physicists, C. Doran, A. Lasenby



Manifold

Here we use the term manifold a bit loosely, referring to an m-dimensional objectM
that can be locally parametrized by a set of coordinates. The general parameterization of
an m-dimensional manifold M in Rn, m ≤ n is given by

x(u1, u2, . . . , um) = xi (u1, u2, . . . , um)ei, i = 1, 2, . . . , n.

We will call 1-dimensional manifolds curves, 2-dimensional manifolds surfaces, and
3-dimensional manifolds solids.



Tangent Space

There is a tangent space at every point of a manifold.



Tangent Space for 1-Dimensional Manifold

Let x : A ⊆ R1 → C ⊆ Rn parameterize a curve C. Fix t ∈ A and let p = x(t). The vector
x′(t), and its scalar multiples, are called tangent vectors to the curve C at p. This 1D
span of x′(t) is called the tangent space to C at p. Denote it Tp.

Ref: Vector and geometric calculus, A. Macdonald



Tangent Space for 2-Dimensional Manifold

Let x : A ⊆ R2 → S ⊆ Rn parameterize a surface S . Fix q ∈ A and w ∈ R2. Let p = x(q).

∂wx(q) = lim
h→0

x(q + hw) − x(q)
h

. (3)

The vector ∂wx(q) is the directional derivative of x at q in the direction of w. The
vector is a tangent vector to the surface S at p. The set of all tangent vectors to S at p is
a vector space. It is called the tangent space to S at p. Denote it Tp.

Ref: Vector and geometric calculus, A. Macdonald



Tangent Space for m-Dimensional Manifold

The vectors tangent to an m-dimensional manifold M, which is parameterized by
x(u, v, · · · ), at a point p ∈ M form the tangent space to M at p, which is an
m-dimensional vector space Tp.

Theorem
{xu, xv, · · · } forms a basis for the tangent space to M at p, where xu =

∂x(u,v,··· )
∂u .

Ref: Vector and geometric calculus, A. Macdonald



Reciprocal Basis

A reciprocal basis {xu, xv, · · · } can always be constructed for a basis {xu, xv, · · · }.

xu · xv =

1 if u = v,
0 if u , v.

Ref: Vector and geometric calculus, A. Macdonald



Vector Derivative

Let F be a multivector valued function defined on a manifold M, which is parameterized
by x(u, v, · · · ). Let {xu, xv, · · · } be a basis for the tangent space Tp at p ∈ M and
{xu, xv, · · · } be the reciprocal basis. Then the vector derivative ∂F(x) = ∂F(x(u, v, · · · ))
is

∂F(x(u, v, · · · )) ≡ xu ∂F(x)
∂u

+ xv ∂F(x)
∂v
+ · · · = xu∂uF + xv∂vF + · · ·



Vector Derivative

−2 −1 0 1 2 −2

0

2
0

5

x(v1, v2) = v1 e1 + v2 e2 + (v1
2 + v2

2)e3

F = (v2 + 1) log(v1)

∂F(1, 0) = 0.2e1 + 0.4e2

gmc script: samples/basin.gmc



Fundamental Theorem of Geometric Calculus

Let M be an m-dimensional bounded oriented manifold in some Rn (n ≥ m) with
boundary ∂M, and let F on M ∪ ∂M be continuously differentiable on M and continuous
on M ∪ ∂M, then ∫

M
dmx ∂F =

∫
∂M

dm−1x F

The boundary ∂M of M is a manifold of dimension m − 1.

Vector and geometric calculus, A. Macdonald



Fundamental Theorem of Geometric Calculus

A boundary has no boundary: ∂(∂M) = ∅. We can use
∮

to signify this:

∫
M

dmx ∂F =
∮
∂M

dm−1x F

vector derivative of F directed integral

infinitesimal m-vector in tangent space
boundary of M

Here, dmx = Imdmx, where Im = Im(x) is the unit m-vector of the tangent space to M at x,
and dmx is the infinitesimal m-volume, which is an infinitesimal scalar.

Vector and geometric calculus, A. Macdonald



Directed Integral

Suppose manifold M is parameterized by x(u1, u2, . . . , um) : A ⊂ Rm → M ⊂ Rn. Then the
directed integral of F over M is∫

M
dmx F =

∫
A
(xu1 ∧ xu2 ∧ . . . ∧ xum)F(x) dA

Vector and geometric calculus, A. Macdonald



Fundamental Theorem of Geometric Calculus

v

e1

e2

e3

ϕ

θ

x(θ, ϕ) = sin(θ) cos(ϕ)e1 + sin(θ) sin(ϕ)e2 + cos(θ)e3

F = cos(θ)∫
M

dmx∂F =
∫
∂M

dm−1xF = 0

gmc script: samples/hemisphere.gmc



Applying Fundamental Theorem to 3D Electronic Structure Problem?

▶ Suppose the electronic structure is a 3D
manifold M.

▶ Assume the chemical property of interest is a
function F on M.

▶ With carefully designed parametric F and M,
we can apply the fundamental theorem to solve
the electronic structure problems in 2D or 4D.
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Epilogue

Computational Considerations

▶ Matrix representation vs geometric algebra
▶ The power of symbolic simplification



Matrix Representation vs Geometric Algebra

The total dimension of Gp,q is 2n, where n = p + q. If we want to create a matrix
representation of the algebra, the matrices will be of the order of 2n/2 × 2n/2.

For example, the matrix representation of Dirac algebra G1,3 requires 4 × 4 matrices.

Don’t be confuse the matrix representation of an algebra with organizing the elements
of the algebra in a matrix form.

N-dimensional rigid body dynamics, Marc ten Bosch
Geometric algebra for physicists, C. Doran, A. Lasenby



The Power of Symbolic Simplification: A Case Study

Calculating Hermite coefficients is one of the performance bottlenecks when we
implement density functional theory using the McMurchie-Davidson integral scheme.
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The arithmetic OP counts of over 93% of the Hermite coefficients calculations are reduced to 15%!



The End


