A Tutorial on Geometric Algebra and Geometric Calculus: A Unified Mathematical Language for Physics

Bin Shao

Microsoft Research AI for Science

Prologue

Level 1 Goals

Mummy doesn't have to worry about me not being able to understand Maxwell's equations anymore.

I can derive them in just 5 minutes.

Daddy doesn't have to worry about me not being able to do rotations anymore.
I can now handle rotations in spaces of any dimensionality.

Level 2 Goals

Grasp the gist of geometric algebra and geometric calculus.

Appreciate the unifying, simplifying, and generalizing power of geometric algebra and geometric calculus for describing physics in a very natural way.

Level 3 Goals

Use geometric algebra and geometric calculus to solve problems in Al for science with the companion tool Geomeculus.

Vector Space \mathbb{R}^{n}

Let's start with an n-dimensional vector space \mathbb{R}^{n} with an orthonormal basis denoted by $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\right\}$, where \mathbb{R} is the set of real numbers.

An arbitrary vector expanded in terms of the orthonormal basis is given by

$$
\mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}
$$

where $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$.

Vector Space \mathbb{R}^{n}

A vector space is a set of vectors with two operations: associative and commutative addition and distributive scalar multiplication.

- $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$, commutative addition
- $(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$, associative addition
- $a(\mathbf{b}+\mathbf{c})=a \mathbf{b}+a \mathbf{c}$, scalar multiplication is distributive w.r.t. addition
- $(a+b) \mathbf{c}=a \mathbf{c}+b \mathbf{c}$, scalar multiplication is distributive w.r.t. addition

Extending \mathbb{R}^{n} into an Algebra with a Product

Let's define an associative product for the unit basis vectors:

$$
\mathbf{e}_{i} \mathbf{e}_{j}= \begin{cases} \pm 1,0 & \text { if } i=j \\ -\mathbf{e}_{j} \mathbf{e}_{i} & \text { if } i \neq j\end{cases}
$$

Let's define the product for arbitrary vectors:

$$
\begin{aligned}
\mathbf{a b} & =\left(a_{1} \mathbf{e}_{1}+\cdots+a_{n} \mathbf{e}_{n}\right)\left(b_{1} \mathbf{e}_{1}+\cdots+b_{n} \mathbf{e}_{n}\right) \\
& =a_{1} b_{1} \mathbf{e}_{1} \mathbf{e}_{1}+a_{1} b_{2} \mathbf{e}_{1} \mathbf{e}_{2}+\cdots+a_{n} b_{n} \mathbf{e}_{n} \mathbf{e}_{n}
\end{aligned}
$$

Extending Vectors to Multivectors

\mathbb{R}^{n} can be extended into an algebra \mathbb{G}^{n} with elements called multivectors.

For example, an element of \mathbb{G}^{3} can be written as:
$a_{0}+a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}+a_{12} \mathbf{e}_{1} \mathbf{e}_{2}+a_{13} \mathbf{e}_{1} \mathbf{e}_{3}+a_{23} \mathbf{e}_{2} \mathbf{e}_{3}+a_{123} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}$

- a_{0} is a scalar (0-vector)
- $a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}$ is a vector (1-vector)
$-a_{12} \mathbf{e}_{1} \mathbf{e}_{2}+a_{13} \mathbf{e}_{1} \mathbf{e}_{3}+a_{23} \mathbf{e}_{2} \mathbf{e}_{3}$ is a bivector (2-vector)
- $a_{123} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}$ is a trivector (3-vector)

Extending Vectors to Multivectors

Every orthonormal basis in \mathbb{R}^{n} determines a standard basis for \mathbb{G}^{n}.

A standard basis for \mathbb{G}^{3} is defined as:

1	basis for 0-vectors
$\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$	basis for 1-vectors
$\mathbf{e}_{1} \mathbf{e}_{2}, \mathbf{e}_{1} \mathbf{e}_{3}, \mathbf{e}_{2} \mathbf{e}_{3}$	basis for 2-vectors
$\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}$	basis for 3-vectors

Extending Vectors to Multivectors

The standard basis for \mathbb{G}^{4} :

1	basis for 0-vectors
$\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$	basis for 1-vectors
$\mathbf{e}_{1} \mathbf{e}_{2}, \mathbf{e}_{1} \mathbf{e}_{3}, \mathbf{e}_{1} \mathbf{e}_{4}, \mathbf{e}_{2} \mathbf{e}_{3}, \mathbf{e}_{2} \mathbf{e}_{4}, \mathbf{e}_{3} \mathbf{e}_{4}$	basis for 2-vectors
$\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}, \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{4}, \mathbf{e}_{1} \mathbf{e}_{3} \mathbf{e}_{4}, \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4}$	basis for 3-vectors
$\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4}$	basis for 4-vectors

Geometric Algebra

Geometric algebra \mathbb{G} is a vector space with a product, called the geometric product.

The elements of \mathbb{G} are multivectors. The geometric product of multivectors A and B is written $A B$. Geometric algebra is closed under the geometric product, that is $A B \in \mathbb{G}$.

Geometric Algebra

For all scalars $a(a \in \mathbb{R})$ and multivectors A, B, and C :

- $A+B=B+A$, commutative addition.
- $(A+B)+C=A+(B+C)$, associative addition.
- $(A B) C=A(B C)$, associative multiplication.
- $A(B+C)=A B+A C,(A+B) C=A C+B C$, multiplication is distributive w.r.t. addition.
- $a(A B)=(a A) B=A(a B)$, scalars commute with multivectors.
- $A+0=A, 0$ is the additive identity.
- $1 A=A 1=A, 1$ is the multiplicative identity.

Notation

- Lower case italic symbols denote scalars, e.g. a, b, \ldots
- Lower case bold symbols denote vectors, e.g. a, b, ...
- Lower case bold \mathbf{e} with a subscript denotes orthonormal basis vectors, e.g. $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$
- Upper case italic symbols denote multivectors, e.g. A, B, \ldots

Algebra Signature

- $\mathbf{e}_{i} \mathbf{e}_{i}=+1$, positive square
- $\mathbf{e}_{j} \mathbf{e}_{j}=-1$, negative square
- $\mathbf{e}_{k} \mathbf{e}_{k}=0$, zero square

Algebra signatures:

- $\mathbb{G}^{p, q, r}: \mathbb{G}$ has a basis with p positive squares, q negative squares, r zero squares
- $\mathbb{G}^{p, q}: \mathbb{G}$ has a basis with p positive squares, q negative squares, 0 zero square
- $\mathbb{G}^{p}: \mathbb{G}$ has a basis with p positive squares, 0 negative square, 0 zero square

The Companion Tool: Geomeculus

Geomeculus: A program for doing geometric algebra and Geometric Calculus

	On Slides	In Code
Addition	$A+B$	$A+B$
Geometric Product	$A B$	$A * B$
Negation	$-A$	$-1 * A$

We can execute commands interactively in Geomeculus, or we can run batched commands using Geomeculus script files (.gmc).

Geomeculus Script

```
algebra_signature 3,1
# unamed expression
e1 * e1
# named expression
F = e1 * e2
# expressions with scalar variables
a = v1 * e1 + v2 * e2 + v3 * e3
A = v11 * e1 + v12 * e2
B = v21 * e1 + v22 * e2
# named exprs can be referenced with $ prefix
C = $A * $B
# assign real number values to the variables
$C; v11=1; v12=2; v21=3; v22=4
# call built-in functions
exponential(0.5 * pi() * $F)
```


Running Geomeculus Scripts

./build/release/bin/geomeculus samples/playground.gmc

Running Geomeculus Scripts

./build/release/bin/geomeculus samples/playground.gmc
./build/release/bin/geomeculus < samples/playground.gmc

Running Geomeculus Scripts

./build/release/bin/geomeculus samples/playground.gmc
./build/release/bin/geomeculus < samples/playground.gmc
cat samples/playground.gmc | ./build/release/bin/geomeculus

Running Geomeculus Scripts

```
./build/release/bin/geomeculus samples/playground.gmc
    ./build/release/bin/geomeculus < samples/playground.gmc
cat samples/playground.gmc | ./build/release/bin/geomeculus
```

./build/release/bin/geomeculus
exec samples/playground.gmc

Running Geomeculus Scripts

```
./build/release/bin/geomeculus samples/playground.gmc
./build/release/bin/geomeculus < samples/playground.gmc
cat samples/playground.gmc | ./build/release/bin/geomeculus
```

./build/release/bin/geomeculus
exec samples/playground.gmc
./build/release/bin/geomeculus --import samples/playground.gmc

Geometric algebra is unifying, simplifying, and generalizing

- Number systems
- Complex numbers, quaternions
- Vector operations
- Inner product, outer product, cross product, angular momentum and torque
- Fields
- Magnetic field, electromagnetic field \rightarrow Maxwell's equations
- Geometric operations
- Rotations, projective geometry, conformal geometry, molecular geometry problem
- Quantum mechanics
- Pauli algebra, Dirac algebra, Schrödinger equation, Dirac equation
-

Complex Numbers

$$
\begin{gathered}
I=\mathbf{e}_{1} \mathbf{e}_{2} \\
I^{2}=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{2}=-1 \\
(a+b I)(c+d I)=(a c-b d)+(a d+b c) I \\
e^{I \theta}=\cos \theta+I \sin \theta
\end{gathered}
$$

The complex number system is isomorphic to the subalgebra with form $a+b I$ of \mathbb{G}^{2}.

Complex Numbers

Rotate a vector by θ in the "complex plane" with $\left\{1, \mathbf{e}_{1} \mathbf{e}_{2}\right\}$ as axes:

$$
\left(1+\mathbf{e}_{1} \mathbf{e}_{2}\right) \exp (\theta I)=-1+\mathbf{e}_{1} \mathbf{e}_{2}
$$

Rotate a vector by θ in the plane with $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ as axes:

$$
\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right) \exp (\theta I)=-1 * \mathbf{e}_{1}+\mathbf{e}_{2}
$$

In the example, $\theta=\frac{\pi}{2}$ gmc script: samples/complex.gmc

Quaternions

$$
\begin{aligned}
& I=\mathbf{e}_{1} \mathbf{e}_{2}, I^{2}=-1 \\
& J=\mathbf{e}_{2} \mathbf{e}_{3}, J^{2}=-1 \\
& K=\mathbf{e}_{1} \mathbf{e}_{3}, K^{2}=-1 \\
& I J K=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{1} \mathbf{e}_{3}=-1 \\
&(a+b I+c J+d K)(a-b I-c J-d K)=a^{2}+b^{2}+c^{2}+d^{2}
\end{aligned}
$$

Multivectors of form $a+b I+c J+d K$ are isomorphic to quaternions.

Inner Product of Vectors

For all vectors a and \mathbf{b} in \mathbb{R}^{n},

$$
\mathbf{a} \cdot \mathbf{b}=\frac{1}{2}(\mathbf{a b}+\mathbf{b a}) .
$$

Outer Product of Vectors

For all vectors a and \mathbf{b} in \mathbb{R}^{n},

$$
\mathbf{a} \wedge \mathbf{b}=\frac{1}{2}(\mathbf{a b}-\mathbf{b a}) .
$$

Geometric Product of Vectors

For all vectors a and \mathbf{b} in \mathbb{R}^{n},

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\frac{1}{2}(\mathbf{a b}+\mathbf{b a}) \\
\mathbf{a} \wedge \mathbf{b} & =\frac{1}{2}(\mathbf{a b}-\mathbf{b a}) \\
\mathbf{a b} & =\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}
\end{aligned}
$$

Cross Product of Vectors

$$
\begin{aligned}
I & =\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \\
\mathbf{a} & =v_{11} \mathbf{e}_{1}+v_{12} \mathbf{e}_{2}+v_{13} \mathbf{e}_{3} \\
\mathbf{b} & =v_{21} \mathbf{e}_{1}+v_{22} \mathbf{e}_{2}+v_{23} \mathbf{e}_{3} \\
\mathbf{a} \wedge \mathbf{b} & =\left(v_{11} v_{22}-v_{12} v_{21}\right) \mathbf{e}_{1} \mathbf{e}_{2}+\left(v_{11} v_{23}-v_{13} v_{21}\right) \mathbf{e}_{1} \mathbf{e}_{3}+\left(v_{12} v_{23}-v_{13} v_{22}\right) \mathbf{e}_{2} \mathbf{e}_{3} \\
\mathbf{a} \times \mathbf{b} & =\left(v_{11} v_{22}-v_{12} v_{21}\right) \mathbf{e}_{3}-\left(v_{11} v_{23}-v_{13} v_{21}\right) \mathbf{e}_{2}+\left(v_{12} v_{23}-v_{13} v_{22}\right) \mathbf{e}_{1} \\
\mathbf{a} \times \mathbf{b} & =-I(\mathbf{a} \wedge \mathbf{b}) \text { or } \mathbf{a} \wedge \mathbf{b}=I(\mathbf{a} \times \mathbf{b})
\end{aligned}
$$

Angular Momentum and Torque

\[

\]

where \mathbf{L} is the angular momentum, $\boldsymbol{\tau}$ is the torque, \mathbf{r} is the position vector, and \mathbf{p} is the momentum vector.

Magnetic Field

$$
\begin{aligned}
I & =\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \\
\mathbf{B} & =\mathbf{b} I=I \mathbf{b}
\end{aligned}
$$

where \mathbf{b} is the magnetic field vector, and \mathbf{B} is the magnetic bivector field orthogonal to \mathbf{b}.

Magnetic Field

$$
\begin{aligned}
I & =\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \\
\mathbf{B} & =\mathbf{b} I=I \mathbf{b}
\end{aligned}
$$

where \mathbf{b} is the magnetic field vector, and \mathbf{B} is the magnetic bivector field orthogonal to \mathbf{b}.

Extending Partial Derivative to Multivector-valued Functions

Let $F: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{G}^{n}$, where U is open. Let $\mathbf{x} \in U$ have coordinates $\left(x_{1}, \ldots, x_{m}\right)$ with respect to an orthonormal basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}$. Then the partial derivative of F with respect to x_{i} is

$$
\begin{equation*}
\frac{\partial F(\mathbf{x})}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{F\left(\mathbf{x}+h \mathbf{e}_{i}\right)-F(\mathbf{x})}{h}=\lim _{h \rightarrow 0} \frac{F\left(x_{1}, x_{2}, \ldots, x_{i}+h, \ldots, x_{m}\right)-F(\mathbf{x})}{h} . \tag{1}
\end{equation*}
$$

We will often abbreviate this as $\partial_{i} F$.

A set $U \subseteq \mathbb{R}^{n}$ is open if every point $x \in U$ has a neighborhood contained in U.

Gradient

Let F be a differentiable multivector function defined on an open set $U \subseteq \mathbb{R}^{n}$. Let $\left\{\mathbf{e}_{i}\right\}$ be an orthonormal basis for \mathbb{R}^{n}. Then the gradient of F is defined by

$$
\begin{equation*}
\nabla F(\mathbf{x})=\mathbf{e}_{i} \partial_{i} F(\mathbf{x})=\mathbf{e}_{1} \partial_{1} F(\mathbf{x})+\mathbf{e}_{2} \partial_{2} F(\mathbf{x})+\cdots+\mathbf{e}_{n} \partial_{n} F(\mathbf{x}) . \tag{2}
\end{equation*}
$$

The product in $\mathbf{e}_{i} \partial_{i} F(\mathbf{x})$ is the geometric product.

Magic trick: algebraically, ∇ behaves like a vector, and ∂_{i} behaves like a scalar.

$$
\begin{aligned}
\nabla F & =\nabla \cdot F+\nabla \wedge F \\
\partial_{i} \partial_{j} F & =\partial_{j} \partial_{i} F
\end{aligned}
$$

Maxwell's Equations

Maxwell's equation in geometric calculus (natural units):

$$
\begin{aligned}
& \boldsymbol{\nabla} F=\rho-\mathbf{J} . \\
& F=\mathbf{e}+\mathbf{B} \\
& \boldsymbol{\nabla}=\frac{\partial}{\partial t}+\nabla=\partial_{t}+\mathbf{e}_{1} \partial_{1}+\mathbf{e}_{2} \partial_{2}+\mathbf{e}_{3} \partial_{3} \\
& \rho: \text { charge density, scalar } \\
& \mathbf{J}: \text { current density, vector }
\end{aligned}
$$

The electric vector field \mathbf{e} and the magnetic bivector field \mathbf{B} are combined into a single multivector field F.

Maxwell's Equations

$$
\boldsymbol{\nabla} F=\rho-\mathbf{J}
$$

Maxwell's Equations

$$
\begin{aligned}
\boldsymbol{\nabla} F & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+\mathbf{B}) & =\rho-\mathbf{J}
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
\boldsymbol{\nabla} F & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+\mathbf{B}) & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+I \mathbf{b}) & =\rho-\mathbf{J}
\end{aligned}
$$

$$
I=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla F & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+\mathbf{B}) & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+I \mathbf{b}) & =\rho-\mathbf{J} \\
\frac{\partial}{\partial t} \mathbf{e}+\nabla \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \mathbf{b} & =\rho-\mathbf{J}
\end{aligned}
$$

$$
I=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}
$$

Maxwell's Equations

$$
\begin{aligned}
\boldsymbol{\nabla} F & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+\mathbf{B}) & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+I \mathbf{b}) & =\rho-\mathbf{J} \\
\frac{\partial}{\partial t} \mathbf{e}+\nabla \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \mathbf{b} & =\rho-\mathbf{J} \\
\frac{\partial}{\partial t} \mathbf{e}+\nabla \cdot \mathbf{e}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b}+I \nabla \wedge \mathbf{b} & =\rho-\mathbf{J}
\end{aligned}
$$

$$
I=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}
$$

Maxwell's Equations

$$
\begin{aligned}
\boldsymbol{\nabla} F & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+\mathbf{B}) & =\rho-\mathbf{J} \\
\left(\frac{\partial}{\partial t}+\nabla\right)(\mathbf{e}+I \mathbf{b}) & =\rho-\mathbf{J} \\
\frac{\partial}{\partial t} \mathbf{e}+\nabla \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \mathbf{b} & =\rho-\mathbf{J} \\
\frac{\partial}{\partial t} \mathbf{e}+\nabla \cdot \mathbf{e}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b}+I \nabla \wedge \mathbf{b} & =\rho-\mathbf{J} \\
\nabla \cdot \mathbf{e}+\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b} & =\rho-\mathbf{J}
\end{aligned}
$$

Maxwell's Equations

$$
\nabla \cdot \mathbf{e}+\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b}=\rho-\mathbf{J}
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{e}+\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b} & =\rho-\mathbf{J} \\
\nabla \cdot \mathbf{e} & =\rho
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{e}+\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b} & =\rho-\mathbf{J} \\
\nabla \cdot \mathbf{e} & =\rho \\
\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b} & =-\mathbf{J}
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{e}+\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b} & =\rho-\mathbf{J} \\
\nabla \cdot \mathbf{e} & =\rho \\
\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b} & =-\mathbf{J} \\
\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b} & =0
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{e}+\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}+\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}+I \nabla \cdot \mathbf{b} & =\rho-\mathbf{J} \\
\nabla \cdot \mathbf{e} & =\rho \\
\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b} & =-\mathbf{J} \\
\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b} & =0 \\
I \nabla \cdot \mathbf{b} & =0
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{e} & =\rho \\
\frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b} & =-\mathbf{J} \\
\nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b} & =0 \\
I \nabla \cdot \mathbf{b} & =0
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
& \nabla \cdot \mathbf{e}=\rho \\
& \frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}=-\mathbf{J} \\
& \nabla \cdot \mathbf{e}=\rho \\
& \Rightarrow \quad \begin{aligned}
-I \nabla & \wedge \mathbf{b}=\frac{\partial}{\partial t} \mathbf{e}+\mathbf{J} \\
\nabla & \wedge \mathbf{e}=-I \frac{\partial}{\partial t} \mathbf{b}
\end{aligned} \\
& I \nabla \cdot \mathbf{b}=0 \\
& \nabla \cdot \mathbf{b}=0
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
& \nabla \cdot \mathbf{e}=\rho \quad \nabla \cdot \mathbf{e}=\rho \\
& \frac{\partial}{\partial t} \mathbf{e}+I \nabla \wedge \mathbf{b}=-\mathbf{J} \\
& \begin{aligned}
-I \nabla \wedge \mathbf{b} & =\frac{\partial}{\partial t} \mathbf{e}+\mathbf{J} \\
\nabla & \nabla \wedge \mathbf{e}
\end{aligned}=-I \frac{\partial}{\partial t} \mathbf{b} . \\
& \nabla \cdot \mathbf{e}=\rho \\
& \nabla \wedge \mathbf{e}+I \frac{\partial}{\partial t} \mathbf{b}=0 \\
& I \nabla \cdot \mathbf{b}=0 \\
& \nabla \cdot \mathbf{b}=0 \\
& \begin{array}{l}
\nabla \times \mathbf{b}=\frac{\partial}{\partial t} \mathbf{e}+\mathbf{J} \\
\nabla \times \mathbf{e}=-\frac{\partial}{\partial t} \mathbf{b}
\end{array} \\
& \nabla \cdot \mathbf{b}=0
\end{aligned}
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{e} & =\rho \\
\nabla \times \mathbf{b} & =\frac{\partial}{\partial t} \mathbf{e}+\mathbf{J} \\
\nabla \times \mathbf{e} & =-\frac{\partial}{\partial t} \mathbf{b}
\end{aligned}
$$

$$
\nabla \cdot \mathbf{b}=0
$$

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{e} & =\rho & \nabla \cdot \mathbf{E} & =\rho \\
\nabla \times \mathbf{b} & =\frac{\partial}{\partial t} \mathbf{e}+\mathbf{J} & \nabla \times \mathbf{B} & =\frac{\partial \mathbf{E}}{\partial t}+\mathbf{J} \\
\nabla \times \mathbf{e} & =-\frac{\partial}{\partial t} \mathbf{b} & \Rightarrow & \nabla \times \mathbf{E}
\end{aligned}=-\frac{\partial \mathbf{B}}{\partial t}, ~(\nabla \cdot \mathbf{B}=0 .
$$

Change symbols to \mathbf{E} and \mathbf{B} for electric and magnetic fields.

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\rho \\
\nabla \times \mathbf{B} & =\frac{\partial \mathbf{E}}{\partial t}+\mathbf{J} \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} & =0
\end{aligned}
$$

Maxwell's Equations

$$
\begin{array}{rlrl}
\nabla \cdot \mathbf{E} & =\rho \\
\nabla \times \mathbf{B} & =\frac{\partial \mathbf{E}}{\partial t}+\mathbf{J} \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} & \nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 & & \nabla \times \mathbf{B}
\end{array}=\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
$$

From natural units to SI units $\left(c^{2} \varepsilon_{0} \mu_{0}=1\right)$.

Ref: Units in electrodynamics, Randy S

Maxwell's Equation

$$
\boldsymbol{\nabla} F=\rho-\mathbf{J}
$$

An "Object-Oriented" Approach to Geometry

We can represent geometric entities as "objects" that can be manipulated in a coordinate-free manner.

This can be well demonstrated by doing rotations using geometric algebra.

Rotation

Rotate a vector \mathbf{v} by twice the angle between \mathbf{a} and \mathbf{b}.

$$
\begin{aligned}
R & =\mathbf{a b} \\
R^{\dagger} & =\mathbf{b a} \\
\mathbf{v}^{\prime} & =R^{\dagger} \mathbf{v} R
\end{aligned}
$$

Rotation

Rotate a vector \mathbf{v} by twice the angle between \mathbf{a} and \mathbf{b}.

$$
\begin{aligned}
R & =\mathbf{a b} \\
R^{\dagger} & =\mathbf{b a} \\
\mathbf{v}^{\prime} & =R^{\dagger} \mathbf{v} R \\
\mathbf{v}^{\prime \prime} & =\frac{\mathbf{v}^{\prime}}{R^{\dagger} R}
\end{aligned}
$$

Rotation

Rotate a vector \mathbf{v} by twice the specified angle in the plane P, specified by a bivector.

$$
\begin{aligned}
R & =e^{\frac{\theta}{2} P} \\
R^{\dagger} & =e^{-\frac{\theta}{2} P} \\
\mathbf{v}^{\prime} & =R^{\dagger} \mathbf{v} R
\end{aligned}
$$

Solving Geometric Problem in Higher Dimension

The problem can sometimes be more intuively solved in a higher dimension.

- Solving 3D problems in 4D
- Solving 3D problems in 5D
- Solving 3D problems in 15D

Geometric algebra provides a unified framework for solving problems in higher dimensions.

Projective Geometric Algebra

Let's represent a 3D point with a 4D vector in $\mathbb{G}^{3,1}$.

A line L passing through two points p and q is represented by the outer product of their corresponding vectors:

$$
L=\mathbf{p} \wedge \mathbf{q}
$$

A plane P containing three points p, q, and r is represented by the outer product of their corresponding vectors:

$$
P=\mathbf{p} \wedge \mathbf{q} \wedge \mathbf{r}
$$

Projective Geometric Algebra

Let I be $\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4}$. The intersection of a line L and a plane P is represented by:

$$
P \cdot(I L)
$$

The intersection of two planes P and Q is represented by:

$$
(I P) \cdot Q
$$

Conformal Geometric Algebra

A 5D conformal geometric algebra can be defined out of $\mathbb{G}^{4,1}$:

$$
\begin{aligned}
\mathbf{e}_{o} & =\frac{1}{2}\left(-\mathbf{e}_{4}+\mathbf{e}_{5}\right) \\
\mathbf{e}_{\infty} & =\frac{1}{2}\left(\mathbf{e}_{4}+\mathbf{e}_{5}\right) \\
I & =\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{\infty} \wedge \mathbf{e}_{o} \\
I^{-1} & =\mathbf{e}_{o} \wedge \mathbf{e}_{\infty} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{1}
\end{aligned}
$$

Points, planes, and spheres can be represented by linear combinations of the basis vectors: $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{o}, \mathbf{e}_{\infty}$.

Molecular Distance Geometry Problem

It is to determine a three-dimensional structure of a molecule given an incomplete set of interatomic distances. We can solve the problem based on calculating the intersection points of three spheres in $\mathbb{G}^{4,1}$.

$$
\begin{aligned}
\mathbf{p}_{i} & =v_{i 1} \mathbf{e}_{1}+v_{i 2} \mathbf{e}_{2}+v_{i 3} \mathbf{e}_{3} \\
\mathbf{P}_{i} & =\mathbf{p}_{i}+\frac{1}{2} \mathbf{p}_{i} \mathbf{p}_{i} \mathbf{e}_{\infty}+\mathbf{e}_{o} \\
\mathbf{S}_{i} & =\mathbf{P}_{i}-\frac{1}{2} d_{i} d_{i} \mathbf{e}_{\infty} \\
\mathbf{Q} & =-\left(\mathbf{S}_{1} \wedge \mathbf{S}_{2} \wedge \mathbf{S}_{3}\right) I^{-1} \\
\mathbf{T} & =-(\pm \sqrt{\mathbf{Q} \cdot \mathbf{Q}}+\mathbf{Q})\left(\mathbf{e}_{\infty} \cdot \mathbf{Q}\right)^{-1}
\end{aligned}
$$

gmc script: samples/molecular-distance-geometry.gmc

Higher Dimensional Geometric Algebra

- Conics in \mathbb{R}^{2} can be represented with $\mathbb{G}^{5,3}$ or $\mathbb{G}^{6,2}$
- Cubic Curves can be handled with $\mathbb{G}^{9,3}$ or $\mathbb{G}^{4,8}$
- Quadric surfaces can be represented and constructed intuitively in $\mathbb{G}^{9,6}$

Determinant of Linear Transformation

Let f be a linear transformation on \mathbb{R}^{n} and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be vectors in \mathbb{R}^{n}. Then

$$
f\left(\mathbf{v}_{1}\right) \wedge f\left(\mathbf{v}_{2}\right) \wedge \ldots \wedge f\left(\mathbf{v}_{n}\right)=\operatorname{det}(f)\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2} \wedge \ldots \wedge \mathbf{v}_{n}\right)
$$

The determinant of a linear transformation f on \mathbb{R}^{n} is the factor by which the transformation scales the oriented volumes of n-dimensional parallelograms.

Pauli Algebra

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{\mathrm{y}}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{\mathrm{z}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

\times	σ_{x}	σ_{y}	σ_{z}
σ_{x}	\mathbb{I}	$i \sigma_{\mathrm{z}}$	$-i \sigma_{\mathrm{y}}$
σ_{y}	$-i \sigma_{\mathrm{z}}$	\mathbb{I}	$i \sigma_{\mathrm{x}}$
σ_{z}	$i \sigma_{\mathrm{y}}$	$-i \sigma_{\mathrm{x}}$	\mathbb{I}

\times	\mathbf{e}_{1}	\mathbf{e}_{2}	\mathbf{e}_{3}
\mathbf{e}_{1}	1	$I \mathbf{e}_{3}$	$-I \mathbf{e}_{2}$
\mathbf{e}_{2}	$-I \mathbf{e}_{3}$	1	$I \mathbf{e}_{1}$
\mathbf{e}_{3}	$I \mathbf{e}_{2}$	$-I \mathbf{e}_{1}$	1

where i is the imaginary unit, $I=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}$, and \mathbb{I} is the identity matrix. The Pauli algebra generated by three spin operators $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$, and σ_{z} is isomorphic to the geometric algebra \mathbb{G}^{3}.

Dirac Algebra

$$
\begin{aligned}
\gamma^{0} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), & \gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \\
\gamma^{2} & =\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right), & \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

where i is the imaginary unit.

Dirac Algebra

\times	γ^{0}	γ^{1}	γ^{2}	γ^{3}
γ^{0}	\mathbb{I}			
γ^{1}		$-\mathbb{I}$		
γ^{2}			$-\mathbb{I}$	
γ^{3}				$-\mathbb{I}$

\times	\mathbf{e}_{0}	\mathbf{e}_{1}	\mathbf{e}_{2}	\mathbf{e}_{3}
\mathbf{e}_{0}	1			
\mathbf{e}_{1}		-1		
\mathbf{e}_{2}			-1	
\mathbf{e}_{3}				-1

where \mathbb{I} is the identity matrix. The algebra generated by $\gamma^{0}, \gamma^{1}, \gamma^{2}$, and γ^{3} is isomorphic to the geometric algebra $\mathbb{G}^{1,3}$.

Dirac Equation for Hydrogen in $\mathbb{G}^{1,3}$

$$
\nabla \psi \mathbf{e}_{1} \mathbf{e}_{2}-\frac{Z e^{2}}{4 \pi r} \psi+m \mathbf{e}_{0} \psi \mathbf{e}_{0}=E \psi
$$

where e is the elementary charge, Z is the atomic number, m is the mass of the electron, r is the distance from the nucleus, and E is the energy.

The equation and its observables are in real algebra of spacetime, with no need for complex numbers.

Manifold

Here we use the term manifold a bit loosely, referring to an m-dimensional object \mathcal{M} that can be locally parametrized by a set of coordinates. The general parameterization of an m-dimensional manifold M in $\mathbb{R}^{n}, m \leq n$ is given by

$$
\mathbf{x}\left(u_{1}, u_{2}, \ldots, u_{m}\right)=x_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) \mathbf{e}_{i}, \quad i=1,2, \ldots, n
$$

We will call 1-dimensional manifolds curves, 2-dimensional manifolds surfaces, and 3-dimensional manifolds solids.

Tangent Space

There is a tangent space at every point of a manifold.

Tangent Space for 1-Dimensional Manifold

Let $\mathbf{x}: A \subseteq \mathbb{R}^{1} \rightarrow C \subseteq \mathbb{R}^{n}$ parameterize a curve C. Fix $t \in A$ and let $\mathbf{p}=\mathbf{x}(t)$. The vector $\mathbf{x}^{\prime}(t)$, and its scalar multiples, are called tangent vectors to the curve C at \mathbf{p}. This 1D span of $\mathbf{x}^{\prime}(t)$ is called the tangent space to C at \mathbf{p}. Denote it $T_{\mathbf{p}}$.

Tangent Space for 2-Dimensional Manifold

Let $\mathbf{x}: A \subseteq \mathbb{R}^{2} \rightarrow S \subseteq \mathbb{R}^{n}$ parameterize a surface S. Fix $\mathbf{q} \in A$ and $\mathbf{w} \in \mathbb{R}^{2}$. Let $\mathbf{p}=\mathbf{x}(\mathbf{q})$.

$$
\begin{equation*}
\partial_{\mathbf{w}} \mathbf{x}(\mathbf{q})=\lim _{h \rightarrow 0} \frac{\mathbf{x}(\mathbf{q}+h \mathbf{w})-\mathbf{x}(\mathbf{q})}{h} . \tag{3}
\end{equation*}
$$

The vector $\partial_{\mathbf{w}} \mathbf{x}(\mathbf{q})$ is the directional derivative of \mathbf{x} at \mathbf{q} in the direction of w. The vector is a tangent vector to the surface S at \mathbf{p}. The set of all tangent vectors to S at \mathbf{p} is a vector space. It is called the tangent space to S at \mathbf{p}. Denote it $T_{\mathbf{p}}$.

Tangent Space for m-Dimensional Manifold

The vectors tangent to an m-dimensional manifold M, which is parameterized by $\mathbf{x}(u, v, \cdots)$, at a point $\mathbf{p} \in M$ form the tangent space to M at \mathbf{p}, which is an m-dimensional vector space $T_{\mathbf{p}}$.

Theorem
$\left\{\mathbf{x}_{u}, \mathbf{x}_{v}, \cdots\right\}$ forms a basis for the tangent space to M at \mathbf{p}, where $\mathbf{x}_{u}=\frac{\partial \mathbf{x}(u, v, \cdots)}{\partial u}$.

Reciprocal Basis

A reciprocal basis $\left\{\mathbf{x}^{u}, \mathbf{x}^{v}, \cdots\right\}$ can always be constructed for a basis $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}, \cdots\right\}$.

$$
\mathbf{x}^{u} \cdot \mathbf{x}_{v}= \begin{cases}1 & \text { if } u=v \\ 0 & \text { if } u \neq v\end{cases}
$$

Vector Derivative

Let F be a multivector valued function defined on a manifold M, which is parameterized by $\mathbf{x}(u, v, \cdots)$. Let $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}, \cdots\right\}$ be a basis for the tangent space $T_{\mathbf{p}}$ at $\mathbf{p} \in M$ and $\left\{\mathbf{x}^{u}, \mathbf{x}^{v}, \cdots\right\}$ be the reciprocal basis. Then the vector derivative $\boldsymbol{\partial} F(\mathbf{x})=\boldsymbol{\partial} F(\mathbf{x}(u, v, \cdots))$ is

$$
\partial F(\mathbf{x}(u, v, \cdots)) \equiv \mathbf{x}^{u} \frac{\partial F(\mathbf{x})}{\partial u}+\mathbf{x}^{v} \frac{\partial F(\mathbf{x})}{\partial v}+\cdots=\mathbf{x}^{u} \partial_{u} F+\mathbf{x}^{v} \partial_{v} F+\cdots
$$

Vector Derivative

$$
\begin{aligned}
\mathbf{x}\left(v_{1}, v_{2}\right) & =v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\left(v_{1}^{2}+v_{2}^{2}\right) \mathbf{e}_{3} \\
F & =\left(v_{2}+1\right) \log \left(v_{1}\right) \\
\boldsymbol{\partial} F(1,0) & =0.2 \mathbf{e}_{1}+0.4 \mathbf{e}_{2}
\end{aligned}
$$

Fundamental Theorem of Geometric Calculus

Let M be an m-dimensional bounded oriented manifold in some $\mathbb{R}^{n}(n \geq m)$ with boundary ∂M, and let F on $M \cup \partial M$ be continuously differentiable on M and continuous on $M \cup \partial M$, then

$$
\int_{M} \mathrm{~d}^{m} \mathbf{x} \partial F=\int_{\partial M} \mathrm{~d}^{m-1} \mathbf{x} F
$$

The boundary ∂M of M is a manifold of dimension $m-1$.

Fundamental Theorem of Geometric Calculus

A boundary has no boundary: $\partial(\partial M)=\emptyset$. We can use \oint to signify this:

Here, $\mathrm{d}^{m} \mathbf{x}=\mathbf{I}_{m} \mathrm{~d}^{m} x$, where $\mathbf{I}_{m}=\mathbf{I}_{m}(\mathbf{x})$ is the unit m-vector of the tangent space to M at \mathbf{x}, and $\mathrm{d}^{m} x$ is the infinitesimal m-volume, which is an infinitesimal scalar.

Directed Integral

Suppose manifold M is parameterized by $\mathbf{x}\left(u_{1}, u_{2}, \ldots, u_{m}\right): A \subset \mathbb{R}^{m} \rightarrow M \subset \mathbb{R}^{n}$. Then the directed integral of F over M is

$$
\int_{M} \mathrm{~d}^{m} \mathbf{x} F=\int_{A}\left(\mathbf{x}_{u_{1}} \wedge \mathbf{x}_{u_{2}} \wedge \ldots \wedge \mathbf{x}_{u_{m}}\right) F(\mathbf{x}) \mathrm{d} A
$$

Fundamental Theorem of Geometric Calculus

$$
\begin{aligned}
\mathbf{x}(\theta, \phi) & =\sin (\theta) \cos (\phi) \mathbf{e}_{1}+\sin (\theta) \sin (\phi) \mathbf{e}_{2}+\cos (\theta) \mathbf{e}_{3} \\
F & =\cos (\theta) \\
\int_{M} \mathrm{~d}^{m} \mathbf{x} \partial F & =\int_{\partial M} \mathrm{~d}^{m-1} \mathbf{x} F=0
\end{aligned}
$$

Applying Fundamental Theorem to 3D Electronic Structure Problem?

- Suppose the electronic structure is a 3D manifold M.
- Assume the chemical property of interest is a function F on M.
- With carefully designed parametric F and M, we can apply the fundamental theorem to solve the electronic structure problems in 2D or 4D.

References

- Clifford algebra to geometric calculus: A unified language for mathematics and physics, D. Hestenes, G. Sobczyk, 1984
- Geometric algebra for physicists, C. Doran, A. Lasenby, 2003
- Vector and geometric calculus, A. Macdonald, 2012
- Geometric algebra and applications to physics, Venzo De Sabbata and Bidyut Kumar Datta, 2007
- Foundations of geometric algebra computing, Dietmar Hildenbrand, 2013
- The power of geometric algebra computing, Dietmar Hildenbrand, 2022

References

- Molecular distance geometry problem, Encyclopedia of Optimization, 2009
- Fundamental theorem of calculus, Garret Sobczyk, Omar Sanchez, 2011
- A Guided Tour to the Plane-Based Geometric Algebra PGA, Leo Dorst and Steven De Keninck, 2022
- N-dimensional rigid body dynamics, Marc ten Bosch, 2020
- Quadric conformal geometric algebra of $\mathbb{R}^{9,6}$, Stéphane Breuils et al., 2018

Epilogue

Computational Considerations

- Matrix representation vs geometric algebra
- The power of symbolic simplification

Matrix Representation vs Geometric Algebra

The total dimension of $\mathbb{G}^{p, q}$ is 2^{n}, where $n=p+q$. If we want to create a matrix representation of the algebra, the matrices will be of the order of $2^{n / 2} \times 2^{n / 2}$.

For example, the matrix representation of Dirac algebra $G^{1,3}$ requires 4×4 matrices.

Don't be confuse the matrix representation of an algebra with organizing the elements of the algebra in a matrix form.

The Power of Symbolic Simplification: A Case Study

Calculating Hermite coefficients is one of the performance bottlenecks when we implement density functional theory using the McMurchie-Davidson integral scheme.

The arithmetic OP counts of over 93% of the Hermite coefficients calculations are reduced to 15% !

The End

