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ABSTRACT
Selective undo allows users to undo any operation in the his-
tory and is considered a key feature in collaborative appli-
cations. Operational transformation (OT) is a powerful tool
for implementing selective undo because it can be used to re-
arrange operations in a history in arbitrary orders. Despite
the significant progress over the past two decades, however,
there is still a space for improvements. Most existing works
take time quadratic or even exponential in the size of the
operation history H to undo an operation. Although this
might be acceptable for real-time collaboration, it would be
suboptimal in mobile and asynchronous collaborative appli-
cations in which a long history may accumulate. In addi-
tion, it is important to prove an algorithm with regard to
the correctness criteria it assumes. This paper proposes a
novel OT-based algorithm that provides integrated do and
selective undo. The algorithm achieves time complexity of
O(|H |) in both do and undo by keeping the history in a spe-
cial operation effects relation order. Its correctness is for-
mally proved with regard to formalized, provable conditions
that are extended from a recent theoretical framework.

Categories and Subject Descriptors
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Systems—Distributed applications; H.5.3 [Information In-
terfaces and Presentation ]: Group and Organization
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1. INTRODUCTION
Undo is a key feature in interactive applications. Many fa-

miliar single-user applications, including text editors, word
processors, design tools and even Web browsers, allow the
user to undo operations in a chronological order. Undo is
often used for user-level error recovery, e.g., to fix typos.
It can also encourage users to explore unfamiliar capabili-
ties in an application provided that the effects of erroneous
operations can always be undone.

In collaborative applications, undo is significantly more
challenging [9, 2, 14]. When the users are distributed and
work in parallel, local and remote operations could be in-
terleaved arbitrarily due to concurrency. A user request to
undo could mean to undo a local operation or a remote op-
eration. To undo a remote operation is even trickier because
there can be multiple operations by several remote users and
it is important to unambiguously specify which operation
by which user. Otherwise, the undo action could be inter-
preted arbitrarily at different sites, leading to unpredictable
consequences in the system. Therefore, in a distributed en-
vironment, it becomes necessary to support selective undo
at the algorithm level, i.e., to undo the effects of any selected
operations in the history.

Operational transformation (OT) [3, 15] is an optimistic
consistency control technique that lies in the heart of many
modern collaborative applications such as collaborative edit-
ing systems1 and Google Wave2. Those applications have
gone far beyond the pure textual group editors in which OT
was originated [3]. In particular, it has been shown that
OT is a powerful tool for implementing selective undo [9,
14] mainly because it is able to transform any pair of op-
erations to commute. This property makes it possible to
remove the effects of any operations and rearrange the his-
tory arbitrarily, e.g., to simulate any order of execution and
explore numerous possible versions of the data under differ-
ent permutations and combinations of operations.

Despite the great research progress in the topic of OT-
based selective undo, e.g., [9, 10, 14, 4, 18, 17], two im-
portant issues deserve further investigation: First, how to
make an undo solution efficient for real-time as well as non-
realtime collaborative applications. For example, approaches
in [9, 4] take time quadratic and that in [17] takes time expo-
nential in the size of history H to undo an operation. There
is a room for improvement when |H | grows long, e.g., in mo-
bile and asynchronous settings in which the collaborators
often have to work in isolation before sync [12]. Secondly,

1http://www.ntu.edu.sg/home/czsun/
2http://www.waveprotocol.org/
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how to formally prove the correctness of an undo solution
with regard to certain conditions if they are assumed in the
solution. For example, the so-called transformation proper-
ties TP1/TP2 [9, 11] are assumed in many OT works as con-
ditions for achieving convergence, and most OT algorithms
are developed under the framework of [16] which includes a
condition called intention preservation.

In this paper we propose an alternative OT-based algo-
rithm with integrated support for do and selective undo.
This work makes the following two major contributions:

1. It can do as well as undo any operation in O(|H |) time.
2. It is based on formalized conditions and its correctness

formally proved with regard to all its conditions.

This work builds on a recent theoretical framework in
this area, Admissibility-Based Transformation or ABT [6].
Originally, ABT is proposed for developing and proving OT-
based do algorithms. It includes two formalized conditions,
causality and admissibility preservation, which together im-
ply convergence. Conceptually, admissibility means (1) that
the invocation of any operation does not violate the relative
position of objects that has been established by admissible
operations invoked earlier, and (2) that every operation is
admissible when it is generated.

This paper will extend the admissibility theory to undo
and give a new algorithm (called ABT-Undo or ABTU) with
integrated support of do and selective undo. The correctness
of ABTU will be formally proved. Furthermore, the relative
position (called the operation effects relation ≺) is utilized to
keep operations in the history H in ≺ order so as to achieve
O(|H |) time of both do and undo. Note, however, that our
work does not need an extra step to order the history.

The rest of this paper is organized as follows: Section 2
will first explain the basic ideas of OT. Section 3 surveys
related previous works. Section 4 discusses the consistency
model and Section 5 presents the ABTU algorithm. Sec-
tion 6 proves and analyzes ABTU. Section 7 concludes.

2. BACKGROUND: OT AND UNDO
To explain the basic ideas of OT-based do and selective

undo, consider the scenario as shown in Figure 1. Suppose
that two users, Alice and Bob, are collaboratively editing
a shared document with an initial string “b”. The data is
replicated at both sites so that the users can work in parallel.
Following the conventions [3], we model the shared data as
a linear string of characters (or atomic objects). Let the
position of the first object be zero. Alice changes her data to
“ab” by operation o1=ins(0,a). Concurrently, Bob changes
his data to “bc” by operation o2=ins(1,c).

When Alice receives o2, if o2 were executed as-is, her doc-
ument would become“acb”, which would violate the original
intention of o2 to insert ‘c’ after ‘b’ [16]. The basic idea of
OT [3] is to transform o2 (i.e., to shift its position) into an
appropriate form that can be correctly executed in current
document state. Here we should transform o2 to a new form
o′2=ins(2,c) to account for the effect of o1 that is concurrent
to o2 and has been executed earlier. However, when Bob
receives o1, o1 can be executed as-is because the execution
of o2 does not invalidate o1’s position.

Now the two sites converge in state “abc”. Then, Al-
ice issues o3=del(0,a). After o3 is executed, Bob issues
o4=del(0,b). The states at both sites become “c”.

b

abc

o4=del(0,b)

o5=undo(o3)

Alice Bob

b Legends:

invoke local op

invoke remote op

propagate op

state of data

o3=del(0,a)

o6=undo(o4)

abc

bcac

abc

o1=ins(0,a)
o2=ins(1,c)

abc

bc
ab

bc

c

bc

c

Figure 1: A scenario of OT-based do and undo: Op-
erations can be invoked in any orders and any oper-
ations in the history can be selected for undo.

At this point, the history of Alice is [o1, o
′
2, o3, o4] and that

of Bob is [o2, o1, o3, o4]. Next, suppose that Alice selectively
undoes her last step o3 by operation o5 to restore object
‘a’, and concurrently Bob selectively undoes his last step o4
by operation o6 to restore object ‘b’. The states of the two
sites become “ac” and “bc”, respectively. Note that the two
undo operations, o5 and o6, are concurrent and defined on
the same document state “c”.

In general, we cannot disregard the inherent dependency
between an undo and its corresponding do operation. Oth-
erwise, e.g., in this scenario, if we naively interpreted o5 and
o6 as to insert two new objects ‘a’ and ‘b’, respectively, it
would be equally possible to get either result, “abc” or “bac”,
depending on the tie-breaking policies. However, if we knew
that the intentions of the two undo operations are to restore
objects originally in state “abc”, the correct result would be
“abc” without ambiguity.

Therefore, the problem of providing an integrated do/undo
solution is manifold: (1) what the correctness criteria are,
(2) how to design the algorithm and prove its correctness,
and (3) how to scale the algorithm with the size of the his-
tory. We will address these three issues in ABTU.

3. RELATED WORK
The topic of undo and recovery has been well studied in

databases with the main purpose to maintain the ACID
properties of transactions. In traditional distributed sys-
tems, convergence is usually the key constraint to satisfy. In
the literature of interactive and collaborative applications,
many undo approaches are proposed that are not based on
OT, e.g., [1, 2]. Those works usually consider read/write op-
erations and an approach is correct as long as it converges,
e.g., by finding a serializable schedule of operations.

OT-based works in general consider two primitives, insert
and delete, in place of writes, to avoid overwriting of inter-
action results. Any pair of operations can be transformed to
commute and operations can execute in arbitrary orders at
different sites. As a lock-free, nonblocking optimistic tech-
nique, OT trades consistency for local responsiveness and
extra constraints are imposed on convergence, such as in-
tention preservation [16] and the effects relation [5, 6].

Traditionally, most OT works focus on supporting do, e.g.,
[3, 16, 15, 11, 13, 5, 6, 12]. Here we focus on OT-based
selective undo. We first survey related previous works and
then summarize the novel contributions in this work.
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[Prakash and Knister 1994] DistEdit [9] is the first
OT-based selective undo solution. To selectively undo oper-
ation o in the history H , it first transposes o to the end of H
and generates its inverse o. Then o is executed and appended
to H as normal. An operation o cannot be undone if it can-
not be transposed with some operation executed later. This
happens when the two operations are considered as conflict-
ing, i.e., their effect objects are in adjacent or overlapping
positions. Because DistEdit needs to recursively remove the
do-undo pairs in H that affect this conflict detection, its
time complexity is O(|H |2).

[Ressel et al. 1999] adOPTed [10] only supports undo
of local operations in chronological order. They interpret
undo(o) as an inverse o generated in the state immediately
after executing its original operation o, concurrent with all
operations executed after o in the history. To undo the
last local operation o in history H , it first generates its in-
verse o and then transposes o to the end of H . After that,
o is executed in current state as normal and appended to
H . Their work achieves convergence by assuming that the
transformation functions satisfy two transformation proper-
ties (known as TP1 and TP2 [9, 11]). However, this is not
really achieved, due to a counterexample given in [16].

[Ferrié et al. 2004] The approach in [4] supports selec-
tive undo while resembling [10] in its interpretation of undo.
Their transformation functions are based on SOCT2 [13],
in which TP2 is assumed but not really satisfied due to a
counterexample given in [8]. Because they transpose H to
extract concurrent operations when processing an operation,
both do and undo take O(|H |2) time.

[Weiss et al. 2008] The selective undo approach of UNO
[18] resembles that of [4]. Their transformation functions are
based on TTF [7]. The time complexity of UNO is claimed as
linear in the size of the shared document. The convergence
of UNO also relies on TP1 and TP2. For verification they
resort to theorem prover. Its correctness also relies on the
intention preservation condition, which is specified similarly
as in [5] yet not formally proved.

[Sun et al. 2009] Both GOTO [14] and COT [17] sup-
ports integrated do and selective undo. They also interpret
undo as concurrent inverse as in [10] except that they cou-
ple o and o such that a do-undo pair behaves as an identity
operation during transformation. They only mark the orig-
inal operation o, without saving its inverse o in the history.
In COT [17], they propose a new context relation theory
to model the special relations between normal operations,
inverse operations, and their transformed forms.

By their own analyses [17], the time complexity for undo
in both GOTO and COT is exponential in the size of H .
The time complexity for do in GOTO is exponential in the
size of H ; COT achieves a time complexity of O(|H |) for do
by a buffering scheme which saves up to N versions of every
operation, where N is the number of sites.

Comparisons: Early works [9, 10] do not support full-
featured selective undo. Works in [11, 4, 18, 14] assume
TP1/TP2, which results in transformation functions that
are often intricate and difficult to develop formal proofs.
Moreover, [4, 18] and [14, 17] are developed under the frame-
work of [16] with three conditions, namely, convergence,
causality and intention preservation. To our best knowl-
edge, COT [17] is the latest work in selective undo.

ABTU is based on formalized conditions and its correct-
ness is formally proved. The two formal conditions, causality

and admissibility preservation, together imply convergence
[6]. Hence it no longer needs to assume TP1/TP2 for con-
vergence. When processing undo(o), we treat o as one that
happens after all operations in H yet contextually equiva-
lent with all those in H that are ordered after o. As will
be explained in Section 5.5, we can flexibly interpret the
semantics of undo similarly as in either [9] or [10].

ABTU provides integrated support for do and selective
undo, with the following unique properties: (1) operations
in history H are kept in the order of their relative position,
i.e., the effects relation ≺; (2) operations with the same
effect objects are ordered by their happens-before relation,
e.g., o immediately follows o in the history; (3) its space
complexity is O(|H |) and, due to the ≺ order of H , the time
complexity of both do and undo is O(|H |). Note that ABTU
keeps all operations in one history whereas previous works
[6, 12] keep insert/delete operations in separate histories.

4. THE CONSISTENCY MODEL
We will first explicate some general guidelines for pro-

viding integrated support of do and undo. Then we will
formalize the correctness criteria.

4.1 General Principles
Due to concurrency, undo is more challenging in a collab-

orative application than in a single-user application. The
following principles have been used implicitly or explicitly
in previous works, e.g., [1, 9, 2, 14]. We also adopt them as
guidelines in our work without making novelty claims:
(a) Undo is an operation that can also be undone.
(b) An operation can be undone exactly once.
(c) Given any operation o, if there are operations that

depend on the effect of o, undo(o) should abort.
(d) The effects of undo operations should be consistent

with normal (do) operations.

Now, we discuss why these principles are relevant.
(a) Like normal operations, an undo is just a request from

the user to achieve certain effect, i.e., to remove the effect
produced by some action requested by this or another user
earlier. Not surprisingly, the undo action is also subject to
a later undo request, i.e., to redo the original operation.

(b) The effect of any operation o cannot be undone more
than once. In a collaborative environment, multiple users
may concurrently request to undo the effect of the same op-
eration. For example, after one user inserts a object, several
other users request to undo the insertion. In this case, only
one undo request should be honored. Otherwise, if the in-
verse (delete) operation were executed multiple times, some
other objects could be deleted by mistake. This would vio-
late the intention of undo, i.e., to restore the data to some
state as if o had never been executed.

(c) Undo as a user operation is to restore the data to
a previous state. Often another normal do operation may
well serve the same purpose. For example, after o1 inserts
an object ‘x’, to remove this effect, we may choose to either
undo o1 by operation o2 or just delete ‘x’ by operation o3.
The latter case can be considered as a type of implicit undo.
Either operation, o2 or o3, depends on the effect of o1. After
either one is executed, any later request to undo o1 should
be ignored. This is compatible with principle (b).

(d) For any do/undo operation o, undo(o) not only hap-
pens after o but also inherently depends on the effect of o.
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Hence we cannot look at undo(o) naively as a new do op-
eration to execute o, the inverse of o. The effect of o must
be somehow correlated to that of o. In other words, the ef-
fects of the undo operations must be consistent with those
of their corresponding do operations. The question is how
to formulate the notion of “consistency” in this context.

4.2 Correctness Criteria
We will formalize two consistency (or correctness) crite-

ria, namely, causality and admissibility preservation, for for-
mally proving algorithms that provide integrated support of
do and undo. These two conditions are first proposed in the
ABT framework [6] which only treats do operations. Here
we extend them to treat both do and undo. Note, how-
ever, that for space reasons here we only explain the part
for undo that is not presented in [6]. We say that an in-
tegrated do/undo solution is correct (or consistent) if these
two conditions are always satisfied.

Following established notations [3, 15], for any two opera-
tions o1 and o2, their temporal relation is denoted as o1 → o2
if o1 happens before o2; or it is denoted as o1 ‖ o2 if they
are concurrent, i.e., neither o1 → o2 nor o2 → o1.

Definition 4.1. Causality Preservation: Given any
two (do/undo) operations, o1 and o2, if o1 → o2, then o1
is invoked before o2 at any site in the system.

The condition of causality preservation is compatible with
the above principles (a)-(c). Since undo is treated as a nor-
mal operation by principle (a), it must observe the cause-
effect relation. Further, the concurrent and dependency
relation in principles (b) and (c) are easy to detect if the
happens-before relation is observed in the system.

Definition 4.2. Admissibility Preservation: The in-
vocation of any (do/undo) operation does not violate the ef-
fects relation ≺ that has been established in the system.

According to [5, 6], objects that ever appear in the same
(linear) document state can be totally ordered by their rela-
tive positions. Consistently with this total order, operations
can also be totally ordered by the relation of the objects
they insert or delete. We use notation ≺ to denote this total
order and the operation relation (called effects relation).
The core notion of effects relation ≺ has been formally elab-
orated in [6]. Intuitively, the admissibility condition can be
restated as follows: an invocation of any operation is admis-
sible if it does not violate the effects relation established by
other admissible invocations in the system; and any oper-
ation is admissible when it is generated. It is proved that
these two conditions, causality and admissibility preserva-
tion, together imply convergence [6]. That is, after all oper-
ations are invoked at all sites, the data replicas will converge
with all objects in the order of the effects relation ≺.
4.3 An Example

Here we use an example to explain the concepts here, as
illustrated in the scenario in Figure 2. We focus on concep-
tually explaining what the“correct”results must be, without
involving any specific do/undo algorithms.

Suppose that the three sites start from the same initial
state “ab”. The left site issues operations o1 and o2 to delete
the objects ‘a’ and ‘b’, respectively. Concurrently, the mid-
dle site issues o4 to insert ‘x’ after “ab”. After these three

ab

x

o2=del(0,b)

o3=undo(o1)

ab

Legends:

invoke local op

invoke remote op

propagate op

state of data

o1=del(0,a)

o5=undo(o2)

yabx

ybx

bx

ab

yx

abx

o6=ins(0,y)

o4=ins(2,x)

b

a

yab

xy*

Figure 2: A scenario to illustrate the effects relation
≺ and admissibility.

operations (o4, o1 and o2) are invoked, the state of the mid-
dle site must be “x”. Consider that concurrently the right
site issues o6 to insert ‘y’ before “ab”. When o6 is invoked at
the middle site, since its current state is “x”, the result could
be either “xy” or “yx”, depending on the specific algorithm
and its tie-breaking policies.

Using the notion of effects relation, the initial relation is
a ≺ b. When o4 is generated, it becomes a ≺ b ≺ x. And
when o6 is generated, it is y ≺ a ≺ b. By transitivity, it
must be y ≺ a ≺ b ≺ x. Operations o1 and o2 are to delete
objects that are already there and should not change the
effects relation. Hence the state of the middle site must
be “yx” without ambiguity after invoking o4, o1, o2 and o6.
Furthermore, after undo operations o5 and o3 are invoked to
restore the deleted objects ‘b’ and ‘a’, respectively, its state
must be “yabx” without ambiguity according to the effects
relation. Note that the effects relation is determined when
operations are generated and hence inherent.

5. THE ABTU ALGORITHM
We will first overview the algorithm structure, introduce

some basic notations and transformation functions, and then
discuss involved functions. As will be shown, the entire algo-
rithm is specified in four functions. Our approach maintains
a history H at each site, operations in which are kept in the
effects relation order. Undo’s are treated similarly as do’s
and correlated with the effects of their corresponding do’s.

5.1 Overview of ABTU
ABTU allows for selective undo of any operation in H .

When an undo command is issued by a user (in context of
current local history H), we denote the command as undo(i)
which means to undo H [i], or the i-th operation in H .

On top of our selective undo algorithm, more intuitive in-
terfaces can be provided for human users to pick the right
operations to undo, e.g., as in [1]. For example, the history
can be visualized to help users understand the implications
of operations; a user is allowed to undo operations in chrono-
logical order, either the last local operation or the last oper-
ation executed locally; or the user can choose operations to
undo by their positions in the document, as in Emacs. It is
always possible to translate commands in those approaches
into an undo(i) command relative to our history H . In any
approach, once the id of the target operation o is known, we
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just need to compare the operation ids to locate the right
H [i], with overheads no more than O(|H |).

In our algorithm, two threads run at every site, namely,
Thread L and Thread R, which processes local and remote
operations, respectively. Any (do/undo) operation gener-
ated by a user is first executed at local site and recorded
in the local history by Thread L before it is propagated to
remote sites. When a remote operation is received, it is
first appended to a receiving buffer RB. Thread R each
time processes one (do/undo) operation o from RB that is
causally-ready, i.e., all operations that happen before o have
already been executed at current site. Every executed oper-
ation is added into H by the effects relation order. There is
no extra step or cost to reorder H in our algorithm.

For the purposes of this paper, we assume that all oper-
ations are eventually received and processed at every site;
and all sites start from the same version of the shared data.

5.2 Notations
Each site is assigned a unique id and maintains a state

vector sv with N elements, where N is the number of sites
in the system. Each element in sv is an integer that is
initialized to zero. As will be shown, at each site, Threads L
and R advance sv when executing operations, and Thread
L timestamps new operations by sv.

We define two primitives, ins(p, c) and del(p, c), which
insert and delete object c at position p, respectively. Each
operation o is a nine-tuple (id, t, p, c, v, dv, tv, ov, uv) with
the following properties: o.id is the id of the site that gen-
erates o; o.t is the operation type, either ins or del ; o.p is
the position at which o is applied; o.c is the object that o
inserts or deletes (also called the effect object); the other
five properties are timestamps explained as follows:
• o.v: the vector timestamp(s) of o;
• o.dv: timestamps of operations that depend on o;
• o.tv: timestamps of operations whose effect objects tie

with (or are identical to) o.c;
• o.ov: if o is an undo, then o.ov is the timestamp of the

original operation it undoes, or otherwise o.ov = ∅;
• o.uv: if operation o is undone by some o′, then o.uv =

o′.v, or otherwise o.uv = ∅.
We use these timestamps to denote the correlation be-

tween operations. For example, if o′ undoes operation o,
then o.uv = o′.v and o′.ov = o.v; meanwhile, o′ is stored
right after o, their effect objects tie, and o′.tv = o.v; if o′

deletes the object o inserts, o′.dv = o.v. If multiple opera-
tions delete the same object or they undo the same opera-
tion, they will be combined into one operation o in H and
o.v is a set of timestamps of those operations.

Besides the two primitives ins(p, c) and del(p, c), we define
a special do-nothing operation or identity operation, denoted
as φ. The document state remains as-is after executing the
operation φ on any document state.

Based on our notations, we adapt the established happens-
before relation→ and concurrent relation ‖ as follows. Given
any two operations o1 and o2, if ∃vt1 ∈ o1.v and ∃vt2 ∈ o2.v
such that vt1 < vt2,

3 then o1 → o2. If neither o1 → o2 nor
o2 → o1, then o1 ‖ o2.

Due to [16], o.p is always defined relative to some state
called the definition state of o, denoted as dst(o). Let dst(o) =
s. The state obtained by applying o to state s is denoted

3vt1 < vt2 iff ∀i : vt1[i] ≤ vt2[i] and ∃j : vt1[j] < vt2[j]

as s ◦ o. Given any two operations o1 and o2, if dst(o1) =
dst(o2), we say that o1 and o2 are contextually equiva-
lent, denoted as o1 � o2; if dst(o1) = s and dst(o2) = s ◦ o1,
we say that o1 and o2 are contextually serialized, de-
noted as o1 �→ o2. If two contextually serialized operations
are ordered by their effects relation, then we say that the
two operations are in effects relation order.

A list of operations, [o1, o2, . . . , on], is a sequence if o1 �→
o2 �→ ... �→ on. Notation s ◦L denotes the state obtained by
applying sequence L to state s, where L is defined in state
s or dst(L)=s. Given any two sequences L1 and L2, where
dst(L1)=dst(L2)=s or L1�L2, if s◦L1=s◦L2, then L1 and
L2 are effects-equivalent, denoted as L1

∼= L2.
We use o to denote the inverse of operation o. We interpret

the semantics of o as o �→ o, o.t �= o.t and o.p = o.p. In the
case of o = ins(p, c), then o = del(p, c); on the other hand,
if o = del(p, c), then o = ins(p, c).

5.3 Basic Transformation Functions
In the literature (e.g., [15, 6]), the following three trans-

formation functions, IT, ET and SWAP are often defined.
Inclusion Transformation (IT ): Given two operations o1

and o2 that satisfy o1 � o2, IT (o1, o2) transforms o1 into o′1
such that o2 �→ o′1, incorporating the effect of o2 into o1. For
example, given two operations o1 = del(3, x), o2 = ins(1, y),
if o1 and o2 are defined in the same document state, then
o′1 = IT (o1, o2) = del(4, x).

Exclusion Transformation (ET ): Given two operation o1
and o2 that satisfy o1 �→ o2, ET (o1, o2) transforms o2 into
o′2 such that o1 � o′2, excluding the effect of o1 from o2.
For example, after serially executing two operations o1 =
del(1, x) and o2 = ins(3, y), o′2 = ET (o1, o2) = ins(4, y).

Swap Transformatioin (SWAP): Given two operations o1
and o2 that satisfy o1 �→ o2, SWAP(o1, o2) transforms o1
and o2 into o′1 and o′2 such that o′2 �→ o′1. SWAP exchanges
the execution order of two operations while preserving their
effects. For example, given two serially executed operations
o1 = del(1, x) and o2 = ins(3, y), then o′1 = del(1, x) while
o′2 = ins(4, y) after SWAP(o1, o2).

Conceptually, SWAP(o1, o2) is equivalent to first doing o′2
= ET(o1, o2) and then o′1 = IT(o1, o

′
2). As will be shown, we

mainly use SWAP and the usage is implicit, i.e., we do not
call the SWAP function explicitly. We can do so because we
keep operations in the effects relation order. As in the above
example for SWAP, for instance, if o1 �→ o2 and o1 ≺ o2,
after exchanging their execution order by SWAP(o1, o2), o1
will remain as-is. That is, executing o′2 first does not affect
the effect of o1. Generalizing this observation, we establish
the following properties of SWAP without proofs.

P1 Given two operations o1 and o2, if o1 �→ o2 and o1 ≺ o2,
then o1 remains as-is after SWAP(o1, o2).

P2 Given two operations o1 and o2, if o1 �→ o2 and o2 ≺ o1,
then o2 remains as-is after SWAP(o1, o2).

P3 Given a non-empty sequence sq whose operations are
in effects relation order, for any i : 0 ≤ i < n =
|sq|, sq[i] remains as-is after swapping sq[i] with sq[i+
1] · · · sq[n− 1] successively.

P4 Given any operation o and a non-empty sequence sq
whose operations are in effects relation order, |sq| = n,
if sq[n − 1] ≺ o, then sq remains as-is after swapping
o with the operations in sq from right to left.
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5.4 Operators for Ordering History
In spirit of the effects relation ≺, we introduce three op-

erators <e, >e and =e for determining the operation effects
relation, which will simplify presentation and proofs of the
algorithm. When all operations are ordered in the same his-
tory, there are cases in which operations are effects-identical
and must be handled differently from previous works [6, 12].

Operator <e: Given any two operations o1 and o2, where
o1 � o2, we say o1 <e o2 if one of the following three con-
ditions holds: (1) o1.p < o2.p; (2) o1.p = o2.p, o1.t = ins,
o2.t = del; or (3) o1.p = o2.p, o1.t = o2.t = ins, o1.id <
o2.id. In the case of o1 �→ o2, we say o1 <e o2 if one of
the following two conditions holds: (1) o1.p < o2.p; or (2)
o1.p = o2.p, o1.t = o2.t = del.

Operator >e is symmetric to operator >e. Given any two
operations o1 and o2, where o1�o2, we say o1 >e o2 if one of
the three conditions holds: (1) o1.p > o2.p; (2) o1.p = o2.p,
o1.t = del, o2.t = ins; or (3) o1.p = o2.p, o1.t = o2.t = ins,
o1.id > o2.id. In the case of o1 �→ o2, we say o1 >e o2
if one of the two conditions holds: (1) o1.p > o2.p; or (2)
o1.p = o2.p, o1.t = o2.t = ins.

Operator <e determines the precedence relation between
the effects of two operations. When o1.p < o2.p, either o1�o2
or o1 �→ o2, o1.c must precede o2.c (or o1.c ≺ o2.c) in any
state after o1 and o2 are invoked.

When o1 � o2, o1.t = ins, o2.t = del and o1.p = o2.p,
o1.c ≺ o2.c must hold because o2.c is an existing object in
dst(o1). For example, let the common definition state be
“x”, o1 = ins(0, y), o2 = del(0, x) and o1 � o2. Obviously,
after executing o1, the state is “yx”, the effect object ‘y’ of
o1 precedes that of o2 (‘x’).

When o1 � o2, o1.p = o2.p and both o1 and o2 are inser-
tions, they insert new objects that are not present in the
definition state. In this case, we impose an order between
them by some priority policy. In ABTU, if o1.id < o2.id,
then o1.c will precede o2.c after both are invoked.

When o1 �→ o2, o1.t = o2.t = del and o1.p = o2.p, the
two operations delete at the same position in a row and
hence o1.c ≺ o2.c must hold. For example, consider state
“xy”, in which a user first performs o1 = del(0, x) and then
o2 = del(0, y). The relation o1.c ≺ o2.c exists even before
the two operations are invoked.

Operator =e: Given any two operations o1 and o2, we
say o1 =e o2 if neither o1 <e o2 nor o2 <e o1. In practice,
o1 =e o2 if o1.p=o2.p and one of the two conditions holds:
(1) o1�o2, o1.t=o2.t=del; or (2) o1 �→ o2, o1.t �= o2.t.

Condition (1) means that o1 and o2 (concurrently) delete
the same object in a common definition state. They are
effects-identical and neither o1 <e o2 nor o2 <e o1.

The condition of o1 �→ o2 and o1.t �= o2.t covers three
cases: (1) o1.t = ins, o2.t = del and both are normal opera-
tions. In this case, o2 deletes the object inserted by o1. (2)
o1.t = del, o2.t = ins and both are normal operations. In
this case, o2 inserts a object at the same position where o1
deletes. Unless o1.c and o2.c appear in some state simulta-
neously, their relation is neither o1 <e o2 nor o2 <e o1. (3)
o2 undoes o1 or o2 = o1. If o1.t = ins, it is similar to case
(1); or if o1.t = del, it is similar to case (2).

Discussions: When any two operations are contextually
equivalent or serialized, the above definitions cover all possi-
ble cases. Otherwise, we design the algorithm such that any
two operations can be transposed to be contextually equiv-
alent or serialized. As a result, for any two operations in

the system, one of the relations, <e, >e or =e, must hold.
Therefore, the union of relations, <e ∪ >e ∪ =e, can totally
order the set of operations in the system. For any two opera-
tions L[i] and L[j] in sequence L, where i < j, if L[i] ≤e L[j]
always holds, then we say that L is in ER (Effects Relation)
order. This is how we order history H .

5.5 Processing of Local Do/Undo Operations

Algorithm 1 Thread L: process local operation o at site k

1: if o is a normal operation then
2: o′ ← o
3: sv[k]← sv[k] + 1
4: o′.v ← sv
5: else //o = undo(i)
6: if H [i].uv �= ∅ or H [i].dv �= ∅ then
7: exit //undo request invalid
8: else
9: o′ ← H [i]
10: sv[k]← sv[k] + 1
11: o′.v ← sv
12: o′.ov ← H [i].v
13: H [i].uv ← o′.v
14: end if
15: end if
16: execute o′

17: o′′ ← integrateL(o′)
18: propagate o′′

In ABTU, any local operation o is either a normal (do)
operation or an undo operation. In either case, Thread L is
activated to process the submitted o, as specified in Algo-
rithm 1 in which site k is the local site.

If o is a normal operation, it is directly executed on the
local data replica. The element in sv for site k is advanced
to indicate that site k has executed a new operation. Then
o is timestamped by sv. After being integrated into the
local history H , o is propagated to remote sites. Procedure
integrateL(o) adds o into H by the effects relation order.

On the other hand, if the submitted o is an undo oper-
ation undo(i), we first check its original operation H [i] to
see whether it has been undone or is depended on by other
operations (line 6). If so, Thread L will abort this undo
request. Otherwise, we generate the inverse of H [i], ad-
vance sv, and timestamp the inverse o′. To keep track of
the do-undo relationship, o′.ov is set to the timestamp of
the original operation (line 12) and the uv property of the
original operation H [i] is set to o′.v (line 13). After that, o′

is processed as a normal operation, i.e., it is executed locally,
integrated into H , and propagated to remote sites.

Note that the inverse o′ in our work can be interpreted
either as in [9] or as in [10], which are followed in other
works as analyzed in Section 3. This flexibility in our work
comes from that our history is in the effects relation order.

Using the strategy in [9], we first transpose H [i] to the end
of H and then generate the inverse in current state. Because
H is ordered by the effects relation, by Property P3, after the
transposition, H [i] remains as-is and the resulting inverse as

defined in current state is just H [i].
Using the strategy in [10], we first generate the inverse

o′ = H [i] that is contextually serialized after H [i]. Then
o′ is considered as concurrent (or more accurately contex-
tually equivalent) with all operations that follow H [i] in H .
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We could make o′ defined in current state by transforming
o′ with those concurrent operations. Similarly, however, be-
cause H is in effects relation order, those operations do not
affect o′ during the transformation and consequently o′ re-
mains as-is after the transformation. Hence the resulting
inverse as defined in current state is also just H [i].

5.6 Processing of Remote Do/Undo Operations

Algorithm 2 Thread R: remote operation o from site r

1: if o.ov �= ∅ then // o is undo
2: find H [i] such that H [i].v ∩ o.ov �= ∅
3: if (H [i].uv �= ∅) then
4: find H [j] such that H [j].v ∩H [i].uv �= ∅
5: H [j].v ← (H [j].v) ∪ (o.v)
6: sv[r]← sv[r] + 1
7: return
8: else
9: H [i].uv ← o.v
10: o.ov ← o.ov ∪H [i].v
11: end if
12: end if
13: o′ ← integrateR(o)
14: sv[r]← sv[r] + 1
15: if o′ �= φ then execute o′

When the system is not busy processing local operations,
Thread R processes one causally-ready (do/undo) remote
operation o at a time. If o.ov �= ∅, then o is an undo opera-
tion. Otherwise, it is a normal (do) operation.

If o is a normal operation (lines 13-15), it will be pro-
cessed by function integrateR(o): First, it transforms o to
incorporate the effects of concurrent operations and obtain a
resulting version of o that can be safely executed in current
state. Second, it adds o to H by the effects relation. Af-
ter the transformation, if the resulting o′ is not an identity
operation φ, it will be executed in current state.

If o is an undo operation, we first scan H to find the orig-
inal operation H [i] such that H [i].v ∩ o.ov �= ∅. Then, we
check whether H [i] has been undone by other concurrent
operations. If H [i] has already been undone, then we find
its undo operation H [j] such that H [j].v ∩H [i].uv �= ∅, and
combine timestamp o.v into the timestamp H [j].v. In this
case, o will not be really executed because the original oper-
ation can only be undone once. However, the local sv is still
advanced to acknowledge the fact that the effect of o has al-
ready been reflected in the data replica of this site. On the
other hand, if H [i] has not been undone yet, we set H [i].uv
to o.v and combine H [i].v into o.ov. Then o is transformed
and integrated into H similarly as a normal operation.

5.7 Procedure to Integrate Local Operations
Algorithm 3 integrateL(o) is called by Thread L to add

a new local operation o to H by the effects relation order.
Note that when a local operation is generated in current
state we have H �→ o. There are two cases to consider:

First, if o is a normal operation, then o.ov = ∅ must hold.
Since H �→ o, we swap o with the operations in H from right
to left until we find an operation H [i] such that H [i] ≤e o.
In this process, for every H [i], if H [i] >e o, we incorporate
the effect of o into H [i] (lines 5-7). If H [i] <e o or H [i] =e o,
we must insert o right after H [i]. We break with current k
carrying the target position.

Algorithm 3 integrateL(o): o′

1: o′ ← o; k← |H |
2: offset ← (o′.t = ins)?1 : −1
3: if o′.ov = ∅ then // o is a normal do operation
4: for (i← |H | − 1; i ≥ 0; i−−) do
5: if H [i] >e o′ then
6: k← i
7: H [i].p← H [i].p + offset
8: else if H [i] <e o′ then
9: break
10: else // H [i] =e o′

11: o′.tv ← H [i].v
12: if o′.t = del then H [i].dv ← o′.v
13: break
14: end if
15: end for
16: else // o is undo
17: find H [i] such that H [i].v ∩ o′.ov �= ∅
18: o′.tv ← H [i].v
19: k← i+ 1
20: for (j ← k; j < |H |; j++) do
21: H [j].p← H [j].p + offset
22: end for
23: end if
24: insert o′ into H at position k
25: return o′

If H [i] =e o, the positions of H [i] and o tie, we set o.tv
to H [i].v to flag this tie. Moreover, if o.t = del, it must
be that o deletes the object inserted by H [i]. That is, o
depends on H [i]. Hence we set H [i].dv to o.v to indicate
this dependency such that H [i] will not be undone.

Second, if o is an undo operation, we only need to find the
target operation H [i] such that H [i].v ∩ o.ov �= ∅. Then we
insert o right after H [i] at target position k = i+1 and, since
these two operations have the same effect objects, we set o.tv
to H [i].v to flag this tie. Furthermore, to accommodate the
effect of o, we shift the positions of all the operations in H
after the target position k (lines 19-22).

5.8 Procedure to Integrate Remote Operations
Algorithm 4 integrateR(o) is called by ThreadR with dual

purposes: the first is to transform o such that its resulting
form o′ can be executed in current state; the second is to add
o at an appropriate position k in H such that the resulting
H remains in the effects relation order. Consider two cases:

(1) Case o.tv = ∅: There is no operation that happens
before o and whose effect ties with that of o.

Since o is causally-ready, all operations that happen before
o must have been included in H . Conceptually, as in [15,
13], we need to transpose H into two subsequences, sqh and
sqc, that are contextually serialized, where all operations in
sqh happen before o and all operations in sqc are concurrent
with o. Then sqh �→ o and o � sqc must hold. To serve the
first purpose, o must be transformed with sqc. To serve the
second purpose of adding o into H by the effects relation
order, we also have to examine operations in sqh.

The fact that H is in the effects relation order could sim-
plify the algorithm. As analyzed in [12], because H is in the
effects relation order, by Property P4, the above transposi-
tion of H does not shift any operation in sqc at all. Here we
achieve the two purposes without transposing H .
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Algorithm 4 integrateR(o) : o′

1: o′ ← o; k← |H |
2: if o′.tv = ∅ then
3: for (i← 0; i < |H |; i++) do
4: if H [i] ‖ o′ then
5: offset ← (H [i].t = ins)?1 : −1
6: if H [i].tv �= ∅ or H [i] <e o′ then
7: o′.p← o′.p + offset
8: else if H [i] >e o′ then
9: k ← i; break
10: else // H [i] =e o′

11: o′ ← φ
12: H [i].v ← H [i].v ∪ o′.v
13: break
14: end if
15: else if H [i] >e o′ then // H [i]→ o′

16: k← i
17: break
18: end if
19: end for
20: else // o′.tv �= ∅, covering the undo case
21: find H [i] such that H [i].v ∩ o′.tv �= ∅
22: o′.p = H [i].p; k ← i+ 1
23: while H [k].tv ∩H [i].v �= ∅ do //H [k] =e H [i]
24: if H [k] <e o′ then
25: o′.p← o′.p + offset
26: else if H [k] >e o′ then
27: break
28: else // H [k] =e o′

29: o′ ← φ
30: H [k].v ← H [k].v ∪ o′.v
31: break
32: end if
33: k← k + 1
34: end while
35: end if
36: if o′ �= φ then
37: offset ← (o.t = ins)?1 : −1
38: for (j ← k; j < |H |; j++) do
39: H [j].p← H [j].p + offset
40: end for
41: insert o′ into H at position k
42: end if
43: return o′

To explain the ideas, consider a history in ER order, H =
[h1, c1, c2, h2, h3, c3], where hi → o and cj ‖ o. Suppose that
the initial state is s0 and that o should be inserted between
h2 and h3. After transposition, the history becomes H ′ =
[h1, h′

2, h′
3, c1, c2, c3] and H ′ ∼= H . After transforming

o with [c1, c2, c3], let the result be o′. Then dst(o′) =
s0 ◦ [h1, h

′
2, h

′
3, c1, c2, c3]. If now we transpose H ′ back to

H , we have dst(o′) = s0◦ [h1, c1, c2, h2, h3, c3] due to
H ′ ∼= H . That is, we can take H �→ o′ after transforming o
with all concurrent operations. Also because H is ordered,
by Property P3, transposing any hi to the end of H does
not shift hi. However, after the transposition, the relation
hi �→ o holds. In other words, we can not only transform o
with any ci but also compare any hi with o in place!

Back to the algorithm, first consider concurrent opera-
tions. For each H [i] ‖ o, if H [i] <e o, we incorporate the
effect of H [i] into o (line 7). Note the condition H [i].tv �= ∅

(line 6), which means that there exists some operation H [j],
where j < i, that has been examined (i.e., H [j] <e o′) and
whose effect ties with H [i]. In this case, H [j] <e o′ and
H [j] =e H [i] and hence H [i] <e o′ holds implicitly.

Meanwhile, to serve the second purpose of keeping H in
order, similarly to Algorithm 3, we scan H until some H [i]
such that H [i] ≥e o. When o′ =e H [i], it must be that
o′ and H [i] delete the same object; we transform o into an
identity operation φ and combine H [i].v with o.v.

Now consider operations that happen before o. We scanH
until operation H [i] → o such that H [i] >e o′ (lines 15-18),
and then add o′ at position i. This suffices because we do
not need to transform o with operations that happen before
it, which means those with effects preceding o are simply
skipped; and those with identical effects are handled in the
case of o.tv �= ∅ (line 20).

(2) Case o′.tv �= ∅: There must exist some H [i] such that
H [i]→o and H [i]=eo, which covers undo operations.

To keep the effects relation order, o is added right after
H [i]. If we knew that there are no operations that are con-
current with o and whose effects objects tie with that of
H [i], we could just set o.p to H [i].p and add o at position
i+ 1, as in line 22. Otherwise, we need to transform o with
those operations (lines 23-34). Similarly to the steps in lines
3-19, we scan H until some H [k] such that H [k] ≥e o′.

When H [k]=eH [i], if o′.t=ins, it must be that o′ and
H [k] concurrently insert at the same position where H [i]
deletes, we order H [k] and o′ by their site ids. If o′.t=del, it
must be that H [k] and o′ concurrently delete the same effect
object; o′ is combined into H [k] and an identity operation φ
is returned, which is not added to H nor executed.

6. ANALYSES AND PROOFS
We first show how well-known undo puzzles are solved in

ABTU, which also serve as examples. Then we will present
formal proofs with regard to conditions formalized in Sec-
tion 4. After that, we will analyze the complexities of ABTU.

6.1 Undo Puzzles
We consider four representative undo puzzles given in [14]:
Case 1: Given state “a”, first execute o1 = del(0, a) and

o2 = ins(0, b), where o1 → o2. Then undo o1.
After executing o1 and o2, the history is H = [o1, o2] =

[del(0, a), ins(0, b)], where o1 =e o2. The inverse of o1 is
o1 = ins(0, a). After executing o1, the state is “ab”. The
history becomes [del(0, a), ins(0, a), ins(1, b)].

Case 2: Given state“a”, invoke two concurrent operations
o1 = del(0, a) and o2 = ins(0, b). Then undo o1.

Since o1 ‖ o2 and o1 � o2, o2 <e o1 holds and the ef-
fect object of o2 should precede that of o1 in the final re-
sult. After executing o1 and o2, the history is H = [o2, o

′
1]

= [ins(0, b), del(1, a)]. Undo o′1 is to execute its inverse
ins(1, a), resulting in state “ba”.

Case 3: Given state “ab”, first execute o1 = del(0, a)
and o2 = del(0, b), where o1 → o2. Then undo o1 and o2
concurrently, i.e., undo(o1) ‖ undo(o2).

The history is [del(0, a), del(0, b)] after executing o1 and
o2. There are two cases depending on the undo order.

1) Undo(o1) is executed before undo(o2): Executing the
inverse of o1 yields state “a” and history [del(0, a), ins(0, a),
del(1, b)]. Now undo o2 by executing its inverse operation
ins(1, b). The state becomes “ab” and the history [del(0, a),
ins(0, a), del(1, b), ins(1, b)].
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Figure 3: An undo puzzle scenario for Case 4.

2) Undo(o2) is executed before undo(o1): After execut-
ing the inverse of o2, ins(0, b), we get state “b” and his-
tory [del(0, a), del(0, b), ins(0, b)]. After executing the in-
verse of o1, ins(0, a), we get state “ab” and history [del(0, a),
ins(0, a), del(1, b), ins(1, b)].

Case 4: Given state “a”, first invoke two concurrent oper-
ations o1 = del(0, a) and o2 = del(0, a) with the same effect.
Then undo o1 and/or o2.

A scenario of this case is illustrated in Figure 3. Take site
1 for example: After executing o1 and o3, the state becomes
“a” and history H = [o1 : del(0, a), o3 : ins(0, a)]. After re-
ceiving o2, it is transformed into a φ operation. The state
remains “a” and H becomes [o1/o2 : del(0, a), o3 : ins(0, a)].
When o4 arrives, we find that its original operation o2 has
already been undone. The state remains unchanged and
H=[o1/o2 : del(0, a), o3/o4 : ins(0, a)]. The execution pro-
cess at site 2 is similar and omitted. Therefore, undo o1
and/or o2 yields a unique result “a” in our approach.

Note that we interpret undo effects not exactly the same
as in [14, 10]. In case (4), they take o1 and o2 as two differ-
ent operations, and the character ‘a’ will be restored only
if o1 and o2 are both undone. However, o1 and o2 are in-
terpreted as the same operation in our correctness model
and combined during the transformation. Hence ‘a’ will be
restored as long as o1 and/or o2 are undone.

6.2 Correctness Proofs

Theorem 6.1. ABTU satisfies Causality Preservation.

Proof. In ABTU, vector timestamps are used such that
any remote operation o can be invoked by Thread R only
if it is causally ready, that is, all operations that happen
before o have been invoked.

Lemma 6.2. Given a history H that is in ER order and
any local operation o that is generated in the context of H,
suppose the history becomes H ′ after Thread L invokes o.
Then H ′ ∼= H · o and H ′ is in ER order.

Proof. First consider the case in which o is a normal
operation. Algorithm 3 adds o into H by the effects relation
order, say at position k. By the algorithm, o is always in-
serted such that ∀i < k : H [i] ≤e o and ∀j ≥ k : H [j] >e o.
Hence, the resulting history H ′ is in ER order.

Meanwhile, o is transposed with every operation inH from
right to left until the target position k. By the algorithm,
o <e H [j] holds for every H [j] that is transposed with o.

By Property P2, the position of o remains as-is while the
position of H [j] is shifted. Because H �→ o, each transposi-
tion step is effects-equivalent. Hence, after the integration,
H ′ ∼= H · o.

Next consider the case in which o is to undo operation
H [i]. Algorithm 3 directly adds o right afterH [i] andH [i] =e

o. On one hand, if H [i].t = ins, H [i + 1] >e o must hold.
Otherwise, it must be H [i+ 1] =e H [i] and, by definition of
=e, H [i + 1].t = del and H [i + 1].p = H [i].p, which means
that H [i] has already been undone explicitly or implicitly.
Then o would have aborted.

On the other hand, if H [i].t = del, H [i+1] >e o also must
hold. Otherwise, if H [i+ 1] =e H [i], then H [i + 1].t = ins
must hold. If H [i + 1] were to undo H [i], then o would
have aborted. If H [i+ 1] is just a normal insert operation,
H �→ o and, by Property P3, H [i + 1] remains as-is if it
is transposed to the end of H . Then, the three conditions
H [i + 1] �→ o, H [i + 1].p = o.p and H [i + 1].t = o.t = ins
imply H [i+ 1] >e o by definition of >e.

Therefore, when an undo operation o is integrated at po-
sition k, ∀i < k : H [i] ≤e o and ∀j ≥ k : H [j] >e o.
Furthermore, Algorithm 3 shifts the positions of those op-
erations after o in H to incorporate the effect of o. Hence,
after the integration, H ′ ∼= H · o.

Lemma 6.3. Given a history H that is in ER order and
a remote operation o, suppose that the history is H ′ after
Thread R integrates o into H and transforms o into o′. Then
H ′ ∼= H · o′ and H ′ is in ER order.

Proof. Consider the following three cases:
1) o.tv = ∅ and ∃H [i] : H [i] =e o. It must be that o

and H [i] concurrently delete the same object, and o will be
transformed into an identity operation φ by Algorithm 4. In
this case, o is combined into H [i]. The resulting H ′ remains
in ER order and H ′ ∼= H · o′ because o′ = φ.

2) o.tv = ∅ and ∀H [i]: either H [i] <e o or H [i] >e o. In
this case, o will be inserted at some position k such that
∀i < k : H [i] <e o and ∀j ≥ k : H [j] >e o. Hence the
resulting H ′ is in ER order. Furthermore, all effects of the
concurrent operations whose effect objects precede that of
o have been included into o′ during the integration (line 7
of Algorithm 4). The operations after the insert position k
have included the effect of o after the integration (lines 37-40
of Algorithm 4). Hence, H ′ ∼= H · o′.

3) If o.tv �= ∅, there must be one H [i] that happens before
o and H [i] =e o. Consider the following two cases:

(3.a) If H [i+1] �=e H [i], it must be H [i+1] >e o. In this
case, o will between H [i] and H [i + 1] with o′.p = H [i].p.
Hence, ∀k ≤ i : H [k] ≤e o and ∀j > i : H [j] >e o. Moreover,
the effect of o will be included into the operations that follow
o in H after the integration. Therefore, H ′ is in ER order
and H ′ ∼= H · o′.

(3.b) There exists some operation whose effect object ties
with that of H [i]. On one hand, if o.t = del, o will be trans-
formed into φ and, similarly to case 1), after the integration,
H ′ is in ER order and H ′ ∼= H · o′. On the other hand, if
o.t = ins, o will be integrated by some tie-breaking policy.
And the effect of o will be included into the operations that
follow o in H . Hence, after the integration, H ′ is in ER
order and H ′ ∼= H · o′.

Theorem 6.4. The invocation of any operation in ABTU
satisfies Admissibility Preservation.
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Proof. According to Lemmas 6.2 and 6.3, given any his-
tory H that is in ER order and any operation o, the inte-
gration of o into H does not violate the ER order that is
already established between operations in H . That is, the
invocation of any o is admissibility preserving.

After all generated operations are invoked in the system,
the histories at all sites will consist of the same set of opera-
tions that are in the same ER order. Note that this does not
contradict the fact that operations are allowed to be invoked
in arbitrary orders at different sites, as long as the causality
preservation condition is observed. Applying these histories
to the same initial state produces the same final state. With-
out loss of generality, assume that the initial state is empty
and all objects are produced by user operations. Then all
objects in the final state must be in the same ER order.

Corollary 6.5. After all generated operations are in-
voked at all sites, all the data replicas converge in the same
final state in which objects are in the ER order.

6.3 Complexities
Since we do not need to save extra information other than

the history H , the space complexity of ABTU is O(|H |).
The processing of any local operation in Thread L (and Al-
gorithm 3) takes time O(|H |) because it only needs to scan
the history once. The processing of any remote operation in
Thread R (and Algorithm 4) takes time O(|H |) because it
can be done by scanning H only once.

Note that the current algorithm presentation is for concep-
tual clarity and our actual implementation is more efficient.
For example, in line 4 of Algorithm 2, it seemingly requires
to scan H . However, H [j] must be following H [i] because
H [j] =e H [i]. Hence it only needs to scan from H [i + 1].
That is, Algorithm 2 only needs to scan H once.

7. CONCLUSION
This paper presents a novel approach to OT-based se-

lective undo for distributed collaborative applications. The
proposed algorithm ABTU achieves O(|H |) space and time
complexities for both do and undo under a unified frame-
work, which drastically improves the latest result [17] that
is exponential-time in undo. Moreover, the correctness of
ABTU is formally proved with regard to two formalized
conditions, causality and admissibility preservation. Due
to simplicity of the effects relation based approach, both the
algorithm and the proofs are simple.

In the journal version of this paper, we will prove ABTU
with regard to transformation properties such as TP1/TP2
[9, 11] as well as IP1/IP2/IP3 [9, 14]. In future research,
we will focus on studying user interface and usability issues
of selective undo in context of specific applications. Our
ongoing work is further optimizing the presented algorithm,
which is fully replicated, for the Web (client/server) archi-
tecture to support Google Wave like Web 2.0 services.
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